
International Journal of  Theoretical Physics, VoL 27, No, 7, 1988 

Fundamentals of Surface Thermodynamics 

A.  Graue l  1 

Received February 2, 1988 

The nonequilibrium behavior for mixtures of fluids in interfaces is discussed. In 
particular, a thermodynamic field theory is given for media in thin, curved regions 
(interfaces with finite thickness), which separates two media with different 
physical properties. The moving interface is considered as semipermeable and 
a generalized transport equation and specific balance equations are derived. A 
systematic investigation of constitutive equations is made and in the limit as the 
thickness of the interface goes to zero it is shown that all relevant interfacial 
relations can be found. 

1. I N T R O D U C T I O N  

We s tudy  a moving  t h r ee -d imens iona l  reg ion  e m b e d d e d  in and  in terac t -  
ing with a t h r e e - d i m e n s i o n a l  con t inuum.  One d imens ion  o f  the moving  
region  is much  smal le r  t han  the o ther  two;  accord ing ly ,  such a th in  region  

can be cons ide red  as an in ter face  with finite thickness .  This  in ter face  can 
be cons ide red  as a m o d e l  for  a membrane .  F o r  such an in ter face  we der ive  
a genera l i zed  t r anspor t  equa t ion  and  specif ic  ba l ance  equa t ions  for  a mul t i -  
cons t i tuen t  fluid in hea t  exchange  and  mate r i a l  exchange  with the  bu lk  
fluids. We s tudy the l imi t ing  behav io r  o f  the  t r anspor t  theorem,  the  specific 
ba lance  equa t ions ,  and  the in ter rac ia l  quant i t ies  as the cons tan t  th ickness  
e o f  the th in  region  goes to zero. F r o m  this l imi t ing  process  we ob ta in  exact  
def ini t ions  o f  the  surface  quant i t ies  and  in te r rac ia l  quant i t ies .  

Our  ma in  interest  is to fo rmula te  a t h e r m o d y n a m i c  field theo ry  for  
d i s con t inuous  m e d i a  with respec t  to a p p l i c a t i o n  to a viscous in ter face  and  
a mixture  o f  fluids in two d imens ions  with exchange  quant i t ies .  To that  end  
we find const i tu t ive  equa t ions  for  one viscous  fluid in the in ter face  and  a 
mixture  o f  chemica l ly  reac t ing  fluids in an in terface .  By us ing ma the ma t i c a l  
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reduction principles we can restrict the functional form of the constitutive 
equations. We obtain further restrictions by an entropy principle on the 
interface (Grauel, 1982a). This entropy principle is physically motivated 
and it expresses the fact that for all times the entropy production is not a 
negative quantity, in agreement with physical experience. Moreover, we 
assume that this principle is valid for all thermodynamic processes, where 
we consider a thermodynamic process as a solution of the field equations 
for certain initial and boundary data. The entropy inequality on the interface 
selects such thermodynamical processes from all possible thermodynamic 
processes of the field equations that do not violate the entropy inequality. 
We obtain restrictions. From these restrictions, we obtain surface relation 
and laws for interfaces by combination of  these relations. The integrability 
condition of  some surface relations is used to restrict the list of arguments 
in the thermodynamic quantities. If  we introduce the reduced constitutive 
equations into the balance equations, we obtain the required field equations 
for the thermodynamic surface fields. 

The use of  an entropy principle as a constraint to obtain restrictions 
for the constitutive equations is accepted in mathematical physics and 
theoretical thermodynamics. To discuss the nonequilibrium behavior of 
interfaces, several authors start with the Gibbs equation and combine this 
equation with the balance equations. In our approach, the Gibbs equation 
on curved interfaces follows as a logical consequence from an entropy 
inequality. Let us now specify the features of our approach. 

2. PRELIMINARIES 

There is an extensive literature on the geometry of  surfaces (e.g., 
Eisenhardt, 1947; Truesdell and Toupin, 1960); McConnell,  1957; Kobayashi 
and Nomizu, 1963; the geometry of parallel surfaces was treated by Thomas 
(1965). Here we give two extensions: the surface geometry is time dependent 
and the thin region is semipermeable. In the next two subsections, I assemble 
some basic formulas of the geometry of  parallel surfaces. 

2.1. Surface Geometry 

Let us consider a smooth surface E(t)  in the Euclidean space E 3 with 
a set of orthonormal base vectors bl, b2, b3. The position vector r of any 
point  P ( u  1, u 2, t) on a moving surface E~ can be written in vector form 

r = b i x  i, i = 1 , 2 , 3  (1) 

where 

X~=X~(uA, t), A = l , 2  (2) 
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The U A a r e  curvilinear coordinates, called surface coordinates on E~ the 
surface of reference, and t represents time. Throughout we use covariant 
notation and the summation convention. The quantity dr  on a point 
P(u 1, u s, t) directed tangentially to the uB-coordinate curve is 

where 

d r =  Or du B (3) 
Ou B 

Or Oxi(u a, t) 
3uB = bi 3u B = : a B  

and (3) in component form is 

d x  i = Xi, B d u  B (4 )  

The quantities x% are components in space (i = 1, 2, 3) lying in the tangent 
plane on P(u  1, u 2, t) directed tangentially to the surface coordinates u 1 and 
u 2. The square of the length of arc on X(t) is given by (ds) 2= go dxi |  
and with (4) it follows that 

(ds) 2 -- gAB duA@ dub (5) 

where gAB = goXg, A | xJ, B is the metric tensor on the surface Z~ and go =/~o 
is the metric tensor in space E 3. With gAS denoting the contravariant 
components of  gAS, we have 

g AC gcB = gBcg  CA = t~ A (6) 

where 6A is the usual Kronecker delta and C A= g A B C  B and c A =  t~BCA B. 
The quantities as are base vectors on the surface, together with the normal 
v e c t o r  

a I • a 2 
e = - -  ( 7 )  

la, • a21 
perpendicular to X(t). The (as, e) represents a basis on the surface. Equation 
(7) written in components has the representation 

ei = �89 XJ, A | x k, B (8) 

where the e-tensor in space is denoted by eOk and eaB is the contravariant 
form of the e-tensor on surfaces defined similarly as the e-tensor in space. 
One has 

e AB = g--1/ZEAB o r  CAB = g l / Z E A B  (9) 

and 

EABEcB ~- ~ A  
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where  3A is the  K r o n e c k e r  de l ta  on surfaces ,  g = det(gAe) ,  and  EAB and  
E AB a r e  t w o - d i m e n s i o n a l  p e r m u t a t i o n  symbols  wi th  the p roper t i e s  c12 = 
- c21  = 1, c 12 = -~21 = 1, and  ~ 11 = Cz2 = ~ 11 = cz2 = 0. F r o m  (8) we conc lude  
that  

eie i = 1 and eiXi, A = 0 (10) 

ho ld  at all  t imes  t. Wi th  the  def ini t ion 

bAe = --Xi, A@ei, e (11) 

o f  the curva ture  t ensor  we ob ta in  by  d i f ferent ia t ing  (10) 

bAB = ei @ X i ; A e  (12) 
i i i i �9 FACe is the cova r i an t  der ivat ive  o f  x ,c and  FACe where  x ;AB = X ,AB -- X ,C 

is the Chris toffel  symbol  on  surfaces.  F r o m  (11) it fo l lows tha t  e ~,A = _baXC i,c, 

where  b a  c = gCnbeA. The  curvature  t ensor  bAe has sca lar  invar ian ts  

k M = l t r ( b A )  1 a "= 5ba and  k~ = de t (b  A) (13) 

The  der ivat ives  o f  kM and  kc  with  respect  to the  curva ture  t ensor  are  

Ok~ = �89 CO and  Okc _ 2kMgBC __ be  c (14) 
Obco ObBc 

where  we have  used  

bAbsC A = 2kMb c - kd3  c (15) 

which  fo l lows f rom the H a m i l t o n - C a y l e y  theorem.  The  der ivat ives  o f  some 
surface quant i t ies  with respec t  to t ime t are  given by  

i i " 
O L A  = ( O t X  ),xluB=(ve )AI.~=VAe'+veiA ( 1 6 a )  

Ot ~ 

o r  

OX',A = V,Ae i -  vbCXi, c (16b) 
Ot I u B 

where  we have  def ined  v(u A, t) = re .  Moreover ,  the  fo l lowing  ho ld :  

OgAe = 2VbAe (17) 
Ot uc 

O___g = - 4 g k M v  (18) 
Ot uc 

Oei AB 
c =  - g  V eXi, A (19) 

Ot 
I 

ObAB 
[ = V.AB -- 2kMVbAB + koVgAR (20) 

Ot [ uc ' 
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Furthermore, we use the following decomposition for the components of a 
velocity field: 

w j = we j q- wAxJ.A 

2.2. Geometry of  Parallel  Surfaces 

In this subsection we generalize the formulas of the surface in space 
to a concept of parallel surfaces in space. We consider a smooth surface 
E~ and erect the normal N to s176 in the direction of the unit normal 
e to s176 We denote by s the surface, smooth by hypothesis, obtained 
by laying off equal distances ~: along the normals N to s176 Therefore 
Z~(t) is to be parallel to the surface s176 The surface s is determined 
by 

~ ( t ) :  R = r+  ~:bie;, i = 1 , 2 , 3  (21) 

where R is the position vector of any point Q(u 1, u 2, t) on the moving 
surface Xe(t) and r is defined by (1). Written in components, this is 

s K ~ =X~(u A, t ) + ~ .  e~(u A, t), A =  1, 2 (22) 

Varying the distance ~ in (22), it is evident that any two surfaces must be 
parallel and we speak of s as a family of parallel surfaces. Formally, 
~:~ [~1, ~:2], where 0>  ~:1>-co and 0<  ~2<oo. In a later section we derive 
balance equations and we consider ~1 and sr as unspecified quantities, 
which are suitable chosen to describe a membrane of finite thickness. The 
two surfaces s and Ee2(t) are written briefly El(t) and s which are 
determined by 

~l(t): K i = , ) ( i ( u A ,  t ) + ~ l "  ei(u A, t) (23) 

~2(t) : Ki = x i (  uA, t)-q- ~2 " ei( uA, t) (24) 

The middle surface between El(t) and E2(t) is defined by the representation 
(2) and we consider this surface as a reference surface in the sense that all 
geometrical quantities of any surface Ee(t) are expressible in terms of the 
basic invariants of the reference surface E~ In the following, I cite some 
basic formulas of the geometry of parallel surfaces for later application. 
For a detailed account of the time-dependent geometry of parallel surfaces 
and shells, see Grauel (1982b). From the concept of parallel surfaces it 
follows that ei, the covariant components of the unit normal to E~ at any 
point P ( u  1, u 2, t), are equal to the covariant components of e i at point 
Q(u A, t) on E~(t), where Q is the crossing point of the normal N on 
P ( u  1, u 2, t) and s Therefore, we do not distinguish between ei on Z~ 
and e~ on s At any point on s we may compute the components 
of tangent vectors similar to derivatives of (2), 

i i ( t ~  -- ~. bA) X ;B (25) K ; A = X ; A d V ~  " e;A=i B i 



866 Grauel 

A semicolon denotes covariant differentiation, and a comma denotes partial 
differentiation in the following. At every point on the interface 

i K ;Aei=O for all t (26) 

At the point Q there exist the components  GaB = Ki, A| of  the metric 
tensor expressed in terms of  the basic invariants at the point P on the 
reference surface, namely 

GAB = (1 -- 2j2kc)gAB -- 2((1 -- s (27) 

where kM and ko are the mean and the Gaussian curvature. For the metric 
tensor GAB we may compute the inverse G AB such that 

G A B  G B c  = 6 a  c (28)  

where ~A c is the Kronecker  delta. The curvature tensor Bac  =- -e i ;a |  
in terms of the basic invariants of  the reference surface is given by 

BAc = ,~jkogAc + (1 -- ~jkM )bac  (29) 

The scalar invariants on the interface, namely the mean curvature KM = �89 
trace (BAc)  and the Gaussian curvature Ko  = det(Bac) ,  are given by the 
equations 

k M  --  ~ko 
K M --  - -  (30)  F(~:) 

/co 
Ko - (31) 

F(~ r 

where F(~:)= d e t ( 6 ~ - ~ ,  b~), or by 

F ( s  ~) = 1 - 2~kM + ~2ko (32) 

In the limit s e ~ 0 we have 

lim KM = kM and lira K o  = ko (33) 
r f~0 

G denotes the determinant of  the metric tensor GaB such that 

G = F 2 g  (34) 

I f  eaB and CAB are alternating tensors on the interface, then we write 

e AB = G - 1 / Z E A B  and CAB = G1/2'F'AB (35) 

where e AB and CaB are surface alternators, which are defined as skew- 
symmetric matrices with the property e , 2 = e ' Z = l .  With respect to the 
considerations on surfaces and (34), we obtain the relations 

e AB = F - l e  AB and eAB = F E A B  (36) 
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between the alternating tensors on interfaces and those on the reference 
surface. 

3. BALANCE EQUATIONS 

We consider a moving three-dimensional region embedded in and 
interacting with a three-dimensional continuum. The one dimension of the 
moving region is much smaller than the other two; accordingly, such a 
region may be regarded as a thin, moving region. There exist in the literature 
many studies describing thin regions as shells of a material body. Here we 
extend the shell theory. First, we consider the thin region as not material 
(interfacial region). Second, we let the interfacial region in general consist 
of other materials than the surrounding material, with the possibility of 
interaction within and between the surroundings and the interfacial material. 
We take into account heat and material exchange. We consider a body ~ ( t )  
with the volume ~V(t). We assume that this volume is divided into the 
volumes ~+(t )  and Y'-(t) by a thin region of parallel surfaces with the 
body b(t) and the volume OR(t). We have ~U(t) = ~ • ~ - ( t )  u ~//(t), and 
the volume ~ ( t )  is bounded by O~(t)=O~ Let �9 be 
an additive property of  ~ so that ~ ,  the amount  of ",If in a partial 
volume v of OR(t), is given by 

�9 ~ = fo O(x', t) d~- (37) 

where ~b(x i, t) is the density of ~ .  We assume that (37) holds for every 
partial volume of OR(t); moreover, we assume additivity of (37) to obtain 
the total amount of �9 in 0//(t). The volume OR (t) is bounded by the surfaces 
E 1 and E 2 and the lateral surface ~.  The rate of change of �9 in ~ is 
given by 

d ~  
= - ~ ( ~ )  + ~ ( ~ )  + ~ ( q , )  (38) 

dt 

where d)(~) is the flux through the surface 0OR = E 1 u E 2 u f ~ .  Here ~ ( ~ )  
is a production term 

~(xIr) = f P.  d~" (39) 
d o-t/ 

and it represents the production o f ~  in OR, for example, the mass production 
in OR via chemical reactions, and 

5F(~) = [ S. dr (40) 
3~z 
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is the supply of ~ ,  for example, by radiation, in the volume q/ from the 
outside of  volume q/. Here P and S are densities, namely the production 
density and the density of  supply. The flux ~ ( ~ )  consists of two parts, 
namely a convective flux ~ ( ~ )  and a nonconvective part 

f0 i d9 rl~ dA (41) 
q/ 

where qb i is the density of the nonconvective flux through 0q/, dA is a 
surface element of 0q/, and r b are the covariant components of a surface 
vector perpendicular to 0R. From (37) and (38) we have 

dfdt ~u ~bdr=-~(~)+fo~u dgi~?jdA+f~u (P+S) d~- (42) 

Let us now perform the calculation step by step. First we calculate the time 
derivative of the volume integral (Truesdell and Toupin, 1960) on the 
left-hand side of (42) and set 

d 
--d~ f~u O d'r = f~z O~bd~'+ ~o~ (43) 

gk are the components of the velocity on the surface bounding the volume 
~. We consider the density ~0 within q/(t) as a function of the coordinates 
K e given by (22) and the time t. Now we compute the time derivative of  
with respect to fixed surface coordinates u a and distance ~ and write 

O~ I A,=O~ Ki~_~Kjlt. OK J (44) O t tLA,r 

where (OKJ/at)l.A~ are the components of the velocity of particles in the 
surface Z(t).  In particular the components of the velocity in ~l ( t )  are 

oKk k CB gk := = wekl IlA,~l - ~I W,BX ,cg (45) 
1 Ol LIA,~I 

and analogously for ~k if we change ~1 by r From equations (44) and (45) 2 
we have 

# A~ O~ ~g WWtO'C (46) 

where 0tb/0~ represents the normal derivative and qJ,c the tangential deriva- 
tive on an arbitrary surface ~ at the distance ~: from the reference surface 
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~o. With dr = F(~) dE do" and some manipulations we obtain 

f I 
} -~--((g W,B4,,C)lblAe g(~) d~do" (47) 

It is suitable to rewrite the quantity (04,/O()F(~) as O(4,F(~))/O( and 
analogously for the quantities in (47). After some straightforward manipula- 
tion on (47) we have 

+W;Acfr 

where 

(48) 

( 
O= j~, F(s ds (49) 

D A B ( ~ )  .= F ( ~ ) g  A B  "-F E A B ( ~ )  (50) 

EA~(O = --f2k~ga~ + fb AB (51) 

with the brackets [[. ~ we have introduced the jump of the physical quantity 
4' on any thin region, which is defined by 

~F(~:)4,~ = F(~:2)4,1e2- F(s~,) 4,1~1 (52) 

4,]~2 is the value of the funct ion 4,(u A, s ~, t) for s ~ = ~:2- The quantity F ( s  ~) in 
(52) is defined by (32) and the quantities F(r and F(,~2 ) are limiting values 
of F(~:) on the surfaces ~:~ and ~2, respectively. The surface integral of  (43) 
has three parts, namely 

~oou4,gJ~jdA=f~ 4,g2JejdE2-L 4,glJejdEl+L4,:~nJdf~ j (53) 

The components of the velocity ~k in the lateral surface UZ(t) are given by 

k �9 A ~ k B C  
---- w e  k + K ;A u - -  CW,  B,u " , c g  (54) 

where /~a a re  the components of  a velocity in the surface f~(t). We refer 
the interfacial quantities to the reference surface E~ where the geometrical 
connection between El(t)  or E2(t) and E~ is given by F(~:), equation 
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(32). The surface elements are given by dE=F(~)do-  and d i ) j=  
DeeXj.e.Xp,,=n p d~d~ (Grauel, 1982b). After some mathematical operations 
we obtain 

(j~oql~sJrljda= fEo{W[~f(l~)~b][+(~slJA);A-(w;c f[;12'~DACd');A)d~ 

and (43) is given by 

d Odr= 0,~+ +( aA);A'q-W;Alll A do- (56) 
dt ~u o 

where 

~ 2 

0 A~-- [EAC(~)tb;cq-DAC(~);c~]~d ~ (57) 
I 

The nonconvective part of (42) can be expressed by 

foou(,)dY~jdA=fw2(,)OJejdE2-frz,(t)~JejdY'+fn(oOJdlls (58) 

where OJ is the density of the nonconvective flux through Oq/. With Stokes' 
theorem, equation (58) takes the form 

fo dPJrbda= f~o{IF(~)dPJ~ej+dpA;a} do" (59) 

and d~ A is given by 

(~A =. )(j,B t~JDAB dE (60) 
1 

Now we calculate the convective part of (42), 

*( * ) = f ~( ,) q" ( vJ - g2 J)ej dE2 - f ~,( o ~" ( vJ - sl J)ej d~ l 

+ I .  ~b'(vJ-ngJ) dOj (61) 
(t) 

vJ(x i, t) are the components of the velocity in e//(t) and the gJ(x i, t) are 
defined on the surfaces El(t) and ~2(/). The ~J(x i, t) is defined by (54). 

," 1 ~  , 

Using Stokes theorem and by some manlpulatmn, we have 

= f o  {~F(~:)~b �9 (v j - gJ)]lej + ~A,A} do- (62) 4,(,t,) 
Jz 
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where 

I ~ ~b. {(vixJ, s + (W.B)DaB(SC) -- F(~:)ti A} d~: (63) 

Finally, we have the explicit expression of (42), 

I [Ot~.l'JTg-~'-~s'4Y(~sua);A-~-W;A~A a } &r ol. s 2g 

= "-fx ~ {d)a;A+~F(~)~Jej~} do" 

- 0{~ ;a+[F(~)q , .  (vJ-~J)ej]]} do-+ o (p+s) do" (64) 

The last term in (64) has the simple form 

f~ (P+S) d'c=I~olf2F(,){P+S}d, do'=fxo(P+s)&r (65) 

where the production can be written 

p = F(~)Pd~ (66) 

and the supply has the form 

2 

s = F(()S dE (67) 
1 

Equation (64) is valid for arbitrarily small areas on the reference surface 
and therefore we obtain a local equation of balance 

O t~s + _~g ~s + W ;A ~j A + ( ~s ~ A + • a _~_ ~ a ) ; A 

+ [[F(~:){q, �9 (v j - s j) ej + dpJej}] = p + s (68) 

which is valid for all points in the thin region. The quantity ~ = ~2- sol is 
the thickness of the interfacial region and the other quantities are defined by 

IE "~2 
~=  F(~)0  d~ (69a) 

1 
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and 

f ~2 0 A = - (EAB(~:)q t ;B + DAB(~),BO),~d ~ ( 6 9 b )  
~t 

r}a = Xj,~ ~PJDBA(~) d~ (69c) 
#t 

~a= I e~ o{DAB(~)(VjXj +~W;B)_F(~)UA~} d~ (69d) 

p = F(~)Pd~ (69e) 
I 

s = F(~)S d~ (69f) 

DAB(~) = F ( ~ ) g  AB + EAB(~) 

EAB(~) = --~2kogAB + ~b AB 

(70) 

(71) 

4. SPECIAL EQUATIONS OF BALANCE 

In this section we discuss special equations of balance for mixtures of 
fluids in thin regions that are in heat and material exchange with the 
surrounding media. To do this we specialize the transport theorem to the 
balance of mass, momentum, internal energy, and entropy by identifying 
~, ~,a, ~a, and r with physical quantities in the thin regions�9 In a later 
subsection we study the limiting behavior of the transport theorem (68) and 
the quantities (69)-(71) to obtain the transport theorem on surfaces and 
interfaces. 

4.1. Equations of Balance for a Mixture of Fluids in a 
Thin Region (Membrane) 

With the definitions in Table I we obtain the equation of mass for 6 
constituents of fluids in the thin region in the following form: 

o,r~+~gG +(Ga2+a2);A +r2w,;A +~f(~) . oo.(v~-iJ)e3=p, (72) 
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Table I. Notation for Mass, Momentum, Energy, and Entropy in a Thin Region 

0 I]/A (iDA ~ A  p S 
s 

Mass of the constituent 6 F 8 F a 0 A A % 0 
Moment of the constituent,~ y~2 k R~A -- T~A ~kA m k Fs,~k 

k "8 Energy of the constituent 6 "ftS(xe~ "~-~X~xk)l ,k ,8 Ogt3A _ T k A x k + Q , , ~  flA se 8 F~;  xk+Fssr ~ 
Entropy yrls M A I~A N a "lrs 0 

where  

F8 = F(~ )p~  d~ (73a) 
i 

r A =  [EAB(r - - D A B ( ( ) ; B p ~ ] ~ d ~  (73b) 
l 

f~:2 A A= p,[F(#)(vA--aA)+vy, BEaB(r162 d~ (73c) 
1 

I? p~ = F ( ~ ) ~  d~: (73d) 
1 

In these  fo rmulas  it is a s sumed  tha t  the dens i ty  o f  mass  p ( u  A, ~, t) d e p e n d s  
on the surface  coord ina te s  u A, the d i s tance  f rom E ~ and  t ime t. Therefore ,  
F~ represen ts  the  mean  dens i ty  d i s t r ibu t ion  over  the  d i s t a n c e  ~:. Here  p~ is 
the p r o d u c t i o n  o f  mass  due  to chemica l  reac t ions  and  consequen t ly  we have 
one par t  o f  the  in te rac t ion  force  and  a p r o d u c t i o n  o f  energy due  to chemica l  
react ions .  Let  us a ssume tha t  the  n u m b e r  o f  i n d e p e n d e n t  p r o d u c e r s  o f  mass  
is less than  A. The number s  g'; are ca l led  s to ich iomet r ic  coefficients and  
they  spec i fy  how many  molecu les  of  mass  m~ are  c rea ted  in the  reac t ion  r. 
We require  that  the mass  is a quan t i ty  conse rved  in each reac t ion  r = 1 , . . . ,  n. 
Therefore ,  there  are n equa t ions  for  n i n d e p e n d e n t  chemica l  react ions .  
Hence  

A 
2 ~';rn~ = 0 (74) 

6=1 

With  respec t  to the fact  tha t  in each reac t ion  r it is poss ib le  that  a cer ta in  
cons t i tuen t  can be p r o d u c e d  or  des t royed ,  we in t roduce  the quan t i ty  z, as 
a quant i ty  tha t  depends  on the mater ia l  in the  th in  region.  F o r  the p r o d u c t i o n  
o f  mass  in the  reac t ion  p we have 

r r rr~ = ~ m ~ z ,  (75) 
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In a mixture 

Grauel 

7r~ = ~ ~;m~Zr (76) 
r= l  

In the following investigations we consider the Zr as quantities that depend 
on the thermodynamic fields and the curvature properties. 

For the balance of momentum we have 

where 

�9 k g .k Ot('y6X6) - t -~  %3X6 "+" W;A RkA "t- (,)/~j~k @ ljA _ TkA + ~ka); A 

+ ~F(~){p~v~ |  - eJ)e;-  r = ~ + r ~  (77) 

f "2 
y~2 k = F(~)p~v~ d~ (78a) 

1 

R kA AB k AB k {E (~:)(P~Vs)w - (78b) = D (~);upsv~}~dl~ 

T~ A = Xj,~ t2DBa(~ :) d~: (78c) 

f? k F(~)rn~ d~ (78d) 
1 

I; F~Y ;k = F(~)o~f~ d~ (78e) 
1 

fel 2 p~v~| - ~ A =  k A (tA)+vjXJ, BEBA(~)W ~w;uDBA(~)} d~ ( 7 8 f )  

We can write for the balance of internal energy 

1 .k ,6 g 1 ,k ,6 

1.~ .~ .~ ~ a  . ~ _  + 
-t-[%S(sE,~ +gX~Xk)U,~ + 1~5 X k "1- Q2 f l a ] ; a  

E 1 2 j fkj ,  ot + [ V ( ~ ) p o (  ~ + ~ v ~ ) ( v ~ - ~ J ) e j  - . ~  ~ ej + q~eA 

= ,e~ + r~Jzk2~, + r~ .  ,r~ (79) 
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where 

A I ~2 Q8 =xj, B q~DBA(s~) d~ (80a) 

f ?2 kj 6 BA T ~ a  =Xj, n ta vgD (~) a~ (80b) 
I 

a2 = {[DAB(~)--F('~)gAB][o~(e~ +SV~)],B1 2 
1 

- -  D A B ( ~ ) ; B p  ~ (6,~ 4- lf)2)}~ d~ (80c) 

#2= o~(~+~vb{F(~)(v2-,~2) 
I 

-{- f)~XJ, B E A B ( ~ )  "{- ~W;BDAU(~)} d ~  (80d) 

k .8.~. I~  72 
F~o~x k F(~)p~f~v~ d~ (80e) 

1 

r~ . ,r~ = F(~)psr~ d~ (80f) 
-1 

se~ = F(~)e8 d~ (80g) 
1 

The balance of entropy is given by 

c3 t ( 3/?'ls ) q- 2 ~  "y'Os -I- w ; A M A 4- ( ")/nslj A -I- f~ A -I- N A ) ; A 

+~F(~){prl" (v j - ~ ) e j  + ~ej]] = 7rs (81) 

I? yrls = F(~)p~7 d~ (82a) 
1 

M a=  fe~)[EA"(~)(p~7);. -- DA"(();.prl]# d# (828) 

~.)A= Xj, u d ) J D A B ( ~ )  dE (82c) 
1 

I? g A = , p~7{F(()(v A - ~l A) "}- f)jxJ, B E A B ( ~ )  + ~w;BDAB(~)} d~ (82d) 

~ = f(~)~r d~ (82e) 
I 
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4.2. Equations of Balance at Surfaces and Interfaces 

We study now the limiting behavior of the quantities (69). To that end, 
we consider a thin region between two surfaces s  and s of  constant 
thickness e and fix ~1 = - e / 2  and ~2 = e/2.  We assume: 

(i) The surface field tp+(u A, t) is given by the definition 

I/t+(U A, t) := lim ~b(x', t), x ' e  ~+(t), x i -+xies  (83) 

and ~-(u A, t) by an analogous definition. 
(ii) The limits of  integrals over fields exist and are nonvanishing smooth 

functions of  the coordinates u A and time t. Let G(u A, ~, t) be a scalar-valued 
function; then 

.,.A.,,:Vmf:[; (84) 

is the scalar-valued field on the surface or interface. Similarly, we introduce 
vector-valued functions on surfaces and interfaces by 

r 
e / 2  

fJ(u  A, t) = lim FJ(u A, ~, t) d~ (85) 
e ~ O  d - - e / 2  

The limiting values of  equations (32), (50), and (51) are 

F(0) = 1 (86a) 

DAB(o ) = gAB (86b) 

EAB(o) = 0 (86c) 

and 

r 
e / 2  

lim S~Ph(u A, ~, t) d ~ = 0  (87) 
e-~O d - e / 2  

where p > 0. Therefore ~a  = 0 and (69d) takes the form 

r 
e / 2  

4) a =  lim F(r A, ~, t)(v a -  ri a) d~: (88) 
e-+O J-e~2 

By definition, the velocity field ti a is introduced into the theory indepen- 
dently of  certain motions of the particles on the surface s and therefore 
4) A represents a diffusion of  particles on the surface if we identify r A, ~, t) 
with the density of mass. If  the diffusion flux ~ a  on the surface is zero, we 
obtain the expression for the velocity field 

r 
e / 2  

6ti A = lim F ( r  A, ~, t)1) A de (89) 
s c o 0  J - - e / 2  
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where 

f 
ef2 

q~(u a, t) = lim F(~)~,(u A, ~, t) ds (90) 
s e~O d - - ~ / 2  

Equation (68) in the limit e--> 0 has the following form: 

Ot~s'~-~g'~-~s'~-(~jwA'~l~A).A ~-[~.t" (vJ--wJ)e~+dPJej]= r (91) 
zg ~ 

where 

f ~ A ( u A ,  t)" AB r i~/2 �9 = xp, ng lim V(~)~P(u A, ~, t) d~ (92) 
E~O d--el2 

r 
e~2 

7r(u A, t):= lim F ( ~ ) P ( u  A, ~, t) d~ (93)  
e ~ 0  , / - - e / 2  

r 
e~2 

o-(u A, t):= lim F(~)S(u A, ~, t) d~ (94) 
~ 0  d-~ /2  

Equation (91) is the same as a result derived earlier (Grauel, 1982a). In 
that work it was assumed that surface fields exist that are smooth on the 
surface�9 Equation (90) shows that the field ~ that we obtain by a limiting 
process depends on the distribution of  the ~tensity ~ J ( U  A,  ~:, t). Therefore, 
the surface quantities in (91), have with (90), (93), and (94), a defined 
meaning bythe  densities q~(u a, ~, t), dpJ(u A, ]5, t), P(u A, ~, t), and S(u A, ~, t). 

4.2.1. Balance of Mass 

Thus we have for the density of mass 

r 
e / 2  

y~ = lim F(~)p~ d~ (95) 
e ~ 0  d - e / 2  

and for the production of mass 

r 
e /2  

% = lim F(~:)II~ d~ (96) 
e ~ 0  , / - e / 2  

Moreover, l im~o F A = 0  and the convective flux (73c) is given by j a  = 
3'~" (W A -  am), where 

r 
e / 2  

wA =: 1 lim F(~)p~v A d~ (97) 
"Y8 e ~ 0  d - e / 2  

We have thus 

a,~. +~g ~ + (nwf);A[vo �9 (v~ - w{)ej] = ~ (98) 
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as the equation of balance for the density of  mass in the interface. By a 
limiting process (Grauel, 1982b) similar to that for the density of mass, we 
obtain the following equations: 

4.2.2. 

where 

Balance of Momentum 

Ot( ~lhWk') - k k A kA y~wa + (3,~w~ | Ta );A W~ 
2g 

k j 
+ [t, o v o  w' )ej - t 2 e j ]  = (99) 

where 

r 
, ~ / 2  

+ l  2 t 2 ya(~E~ ~w~)=lim F(s~)pa(ea+~v,) d~ (101a) 

( ~/2 
.,-kA ~-- F(r d~ (101b) 

[ e/'~ 
,ea = lim F(~)e~ d~ (101c) 

e--*O 4 - e / 2  

[ e12 

7~w~ - lira F(r k dE (100a) 
e~O ,J-e~2 

T ~ A  BA r ~/2 - g  Xj, B lim F(~)tkSd# (100b) 
eoO d--e /2  

el2 

m k - l i r a  F(s d E (100c) 
e~O d-~/2 

r 
e/2 

y~F k = lira F(s dE (100d) 
e+O d - ~ / 2  

k A r e / 2  yawa| =lira F(()p~vk| A d~ (100e) 
e--,g j - e l 2  

4.2.3�9 Balance of Internal Energy 

+ [p,,(e,, +~ 2 j - -~vke j .q ,~es]  

= ,e8 + 3,~F~w~+ ys ~ra (101) 
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r 
e /2  

k k k 8 3'aFawa + 3'a sra =l im F(~){pafavk+para} d~ (101d) 
e~O d--e~2 

By some mathematical manipulations using equations (101), we have 
(Grauel, 1982a) 

O,(,,/Es)+_.~g3JE,+(3,E, wA+ Oa); A -  ka T Wk,a+[p(e+�89 =) 

• (V j -- W~) + qJ -- tkJgkt(Vl-- wt)ea] = yrs (102) 

4.2.4. Balance o f  Entropy 

Ot( ~ll~s ) -4- g "y37s 21- ( ~l~s WA "q- I~a); a "{- [[377(7.) j -- wJ )e j  q- f~Jej] 
zg 

where 

= ~-, (103) 

f 
e /2  

yrT, = lim F(~)p~7 d( (104a) 
e-~O d--e/2 

r 
e /2  

do a = lim x j , ~  ~JDa~(~) ds ~ (104b) 
E~0 J - e / 2  

Equations (98), (99), (101), and (103) are the same as given by Grauel 
(1980, 1982a), except that here we have defined the surface quantities 
precisely�9 

5. CONSTITUTIVE EQUATIONS FOR SEMIPERMEABLE 
SURFACES AND INTERFACES 

The constitutive equations depend on the physical field variables, 
namely the density of mass, velocity, temperature, and geometrical field 
variables used to characterize the curvature properties. If we know the 
constitutive equations, then these, together with the balance equations, give 
the field equations for the surface fields�9 

Definition. Every set of surface fields that yields a solution of the field 
equations under initial and boundary conditions is called an interfacial 
thermodynamic process of the material under consideration. 
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The equations of semipermeable surfaces are the equations of balance 
of mass, momentum, and internal energy and are given by 

t~t~/c3+2-~g'YS+('~W~);A+[~e" (1)3a--w~)eJ] = .=,L ~m~z, 

k g k Ot('y,~W~)"t-~g 318Ws q-('y,~wk(~w A -  rkA); A 

+ | ( v : -  t%]e j = T,F  
(105) 

a,(yE,) + - ~  yEs + ( yE,  w A + QA) _ T k A w k ; A  

+ [p(e +�89 k - wk)2)(VY -- W~) + qJ -- tkjgkz(Vt -- wt)]ej 
A A 

t~=l  tS= l  

In addition, the fields of the materials occupying ~+(t) and T'-(t) will be 
governed by the field equations of mass, momentum, and internal energy, 

(g tp ot "4- J 

atp~,v k + (p~,v~ | v~ - t~Y);j = m~ + p~f~ (106) 
at(pe ) + (pevJ + qJ),j -- tkJvk,j + p �9 r 

where the constitutive equations for kj k qk t~, m~, and depend on the fields 
of the mass density p~, velocity v k, and bulk temperature T in a manner 
characteristic for the bulk materials on each side of the interface�9 

The constitutive equations from physically motivated assumptions gen- 
erally have too complicated a field dependence. Therefore, it is significant 
to ask how we can reduce this dependence of the variables for a material 
under consideration�9 Principles that reduce constitutive equations are called 
reduction principles and we must require that they be compatible with the 
laws of physics and mathematics. We use two principles with respect to the 
functional form of the constitutive equations and require that these are 
unchanged by (i) Galilean transformation and (ii) transformation of the 
surface coordinates. 

Moreover, we use the representations for isotropic functions. The third 
principle is a physical one, called the entropy principle�9 The equations of 
balance (105) must be supplemented by constitutive equations for Es, ~Ts, 
QA, d~A, and T kA which relate the surface quantities to the fields of mass 
density T( U A, t), velocity w k  ( u A, t ), and temperature Ts( u A, t ) i n  a material- 
dependent manner�9 We assume that the value of the surface temperature 
Ts may differ from the limiting values of the bulk temperatures T § and T- 
at the interface�9 

We discuss two different materials, a single viscous fluid and a chemi- 
cally reacting mixture of fluids in the interface. The constitutive quantities 
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for a single viscous fluid may have the functional dependence 

C = cO(y, T~, xkAZs, k, gABwk;AXJ, B , xk, A, ek, A) (107) 

where the gradient g A B w k  ;AXJ, B describes a gradient of the velocity field w k. 
We do not consider the explicit dependence of the velocity w k and a gradient 
of the density of mass, because this dependence would not yield more 
information. Moreover, we exclude a variable J's in our theory of  a viscous 
interface. But if we want to consider the possibility of thermal wave propaga- 
tion at finite speeds, we must include the time derivative of T~ in the theory. 
The second material under consideration is a heat conducting material with 
the possibility of chemical reactions in mixtures in the interface. For that 
we consider the functional dependence 

C ~(y~, T~, ")/6,A, Ts, a ,  wk ,  k k = x .a, e ,a) (108) 

In both (107) and (108) the components XkA and egA are added to describe 
the curvature properties of the interface. In the following we develop the 
theory for a viscous interface and cite some results for a mixture of nonvis- 
cous fluids derived in a previous paper (Grauel, 1982a). 

5.1. Kinematical Transformation Properties 

5.1ol. Restrictions Imposed by Galilean Transformation 

We use two spatial frames ~J and x k, which are related by the Galilean 
transformation 

~ J = QJkxk -k- vJt  (109) 

where v j is a t ime-independent velocity that relates the origin of the two 
spatial frames and Q~J is a time-independent orthogonal tensor with Q-ljk = 
QgJ and det(Q jk) = +1. In the following I require that det(Q jk) =+1 .  A 
scalar S, the components of  a vector W, and the components of  a tensor 
T jk are called objective if holds 

S =  S, ~,j = Qjk Vk ' ~jk = Qjp QkqTpq (110) 

with respect to (109). 
We begin by investigating the transformation properties of some 

geometrical quantities and the fields on surfaces. When the surface motion 
xi(u A, t) is replaced in (109), it is clear that the quantities Xi, A are objective 
quantities, 

Xi, a = QiJxi, A (111) 

and moreover 

U= QUe j and ~i,A = QUe~A (112) 

Consequently gAB, ban, kM, and ko are objective scalars with respect to 
(109). It is easy to conclude that the mass density y, the surface temperature 
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T,, and the surface gradient Ts, A are objective scalars with respect to (109). 
The deformation measure that characterizes a viscous medium is the variable 

AB k i g w ;AX~,n in (107). The transformation is given by 
AB i j g x ; ~ w  ;A QiPQJqgAnxP;Beq(w;A+wCbAB) 

-1- g DC gAB xP;BXq;c ( WD; A -- WboA ) (113) 

where we have used J _ ,,-xjk k k W ;A-- t4 W ;A and for w ;A the expression 

k (W.A+WCbcA)eqq_ C (w  ;a--  w b C ) x q ; c  (114) W ;A ~ 

The first part of the right-hand side in (113) is antisymmetrical with respect 
to p and q. This gives us the motivation to decompose the second part of 
the right-hand side into a symmetrical and an antisymmetrical part. If  we 
collect together the antisymmetrical parts, then we obtain 

gAB xP;BWq;A = QipQJq( Apq -[- d pq) (115) 

with the definitions 

APq = gaBXP;Beq(w;a-[- wCbAc)'q-gABgCDx[P;Bxq];C(WD; A -  WbDA ) (116) 

d pq = gABgDCx(P;BXq);c (WD; a -- WbDA ) (117) 

If  we imagine that the left-hand side of  (113) can be decomposed into a 
symmetrical part d 'j and an antisymmetrical part A'~, then we have 

~ij ---- QipQjqdpq (118) 

~ij = QipQjq Apq (119) 

Equation (116) represents a rigid rotation and therefore A pq does not 
represent a variable in this theory. The quantity (117) is the deformation 
gradient on surfaces and remains in the list of  variables in (107). The list 
of variables of  a viscous fluid depends on 

"y, Ts, Ts, A, d 0, X j;A, and eJ.A (120) 

Moreover, the transformation properties of  the constitutive equations in 
the surface are given by 

Es= Es, 
and 

~.~s=ns, (~A = QA, ~)A=f~A (121) 

~kA = QkJTJA (122) 

With respect to (110). From the condition that the moment of momentum 
must be conserved in a viscous fluid, which is true of particles without spin, 
we conclude that 

T A = o  and ekeAB(T[BA]+ T(BA) )=O (123) 
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Moreover, with the properties of 8AB one has T [BA]--- 0 and directly from 
(109) it follows that 

~.AB= TAB (124) 

5.1.2. Principle of Material Objectivity in Space 

For any given scalar-valued constitutive quantities (121) and (124) we 
shall write of, for the time being, and let ~ represent the list (120) of surface 
variables. The principle of material objectivity in space requires that the 
constitutive quantities are invariant in form with respect to the transforma- 
tion (110). Therefore, it is valid that 

o f (m = of(h) (125) 

for any function of. Equation (125) represents a functional equation which 
has the explicit form 

of(% L ,  L,B, dJk, XJ;A, eJ;A) 

= of(~, T~, T,.B, d jk, 2J;AOJ;A) 

= of(y, T,, T~,z, QJPQkqdPq, QJPxP.A, QJPeP.A) (126) 

The function of will be a scalar-valued function; therefore of consists of 
all possible combinations of scalar products, scalar triple products, etc., 
which we obtain by a combination of the vector variables, tensor variable 
d jk, and the scalars of the list IL The vector-valued variables are XJ;A and 
eJ;A . Not all combinations of these variables are independent of each other. 
We have the following independent products, which yield linear variables 

XJ;A @ XJ;B = gAB 

--XJ;A (~ eJ;B = bAB (127) 

dJkx J;A @ x k;B = dab 

where 

daB=W(A;B)--WbAB (128) 

If we neglect multiple products of variables that yield nonlinear scalar- 
valued terms, we obtain a representation of of that is linear in the fields y, 
Ts, Ts, A, daB, gAB, and bAB such that 

F = ~(T, T~, T~,A, dAB, gAB, bAB) 
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5.1.3. Restrictions Imposed by Transformations of the Surface Coordinates 

Obviously, the surface coordinates in the form 

uA=uA(~ B) (129) 

are not unique, and there are infinitely many curvilinear coordinate systems 
that can be used to locate points on a given surface E. We assume that the 
transformations (129) are invertible, so that 

a B =~B(uA) 

and we require det(ouA/oa B) = 0. We call a scalar s, a vector v A, and a 
tensor t AB on the surface objective under  (129) if 

g=s, ~A=hAv B, ~AB A 8 CD = h c h o t  (130) 

where hA: = o~A/ou B. By hA lc =ouC/o~ a we denote the inverse of  h A and 
we have to require that det(h A) ~ 0 holds. Moreover,  we have hAlCh a = 8c. 
From this it follows that ~iA = hA1Bei, B and ~i = hAIBxi, n and that the metric 
tensor and the curvature tensor are objective with respect to (130c). 
Moreover,  we see that the mean curvature kM and the Gaussian curvature 
are objective scalars. Let us require that the density T and the temperature 
be objective scalars. Whereas the surface gradient of  the temperature and 
the velocity gradient are objective quantities, according to the t ransformation 
rule for covariant vectors and tensors: 

Ts,  a = hA1BTs, B and dAB = hAlCh-Bl~ (131) 

Now we investigate which restrictions follow if we require that the constitu- 
tive functions be invariant in form under t ransformation of the surface 
coordinates .  For the time being we consider ~(s, VA, tAB) a constitutive 
function depending on a scalar s, a covariant vector VA, and a covariant 
tensor tAB and let ~b and ~ be the values of  this function in the system of  
coordinates u A and aB; then we require 

= ~b (132a) 

according to (130a). I f  

~)( S, VA, tAB) = ~P(g, ~A, ?AB) (133)  

then we have invariance in form and a functional equation 

~(S, 1)A, tAB ) = ~p(S, hAIG VG, hAIGhBIn tGH ) (134a) 

from which we can conclude scalar-valued invariants. Similarly, we have 
for a vector-valued or tensor-valued constitutive function 

~tK = h K~A (132b) 

~KL= I~K14L~AB (132c) tt A t tB~ 
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Therefore, we have 

h ~ C  ( s, ~)a, tAB)= ~K ( S, halC Vc, hA~hBln  t~n) 

Or 
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(134b) 

h K r L  CDI c n o x  ~s, VA, tAB)=xKL(s, hAl~VC, hAl~h~lHtoH) (134C) 

Applying the above results to (121) and (124), we can write 

Es(y, T~, Ts, A ,  dAB , gAB, bAn) 

Es(% T~, - , o  = hA Ts, o, hAIGh-B1HdGH, hAl~hBlHgon, hA l~h~nbon)  

rls(% �9 �9 �9 bAB) = ~%(T, �9 �9 �9 hA~Oh~Ibcl-l) 

h~ QC ( T, . . . , bAn)= Q K ( % . . . ,  h AlOh ~lH bon ) 
(135) 

h~@C(T, . . . ,  b a B ) =  ~ K  (T , - . - ,  hA1Oh~lHbGn)  

h~h~TCD(T, . . . , ban)= TKL(T, .. . ,  hA~Gh~nboH) 

The transformation principles on the surface require that the constitutive 
functions be isotropic functions with respect to the group of  transformations 
h A, from which we now deduce restrictions for the constitutive functions. 
Equations (135) are equations of  functional behavior;  this means that a 
scalar-valued function depends on scalar invariants. The scalar invariants 
are 

T, T~, kM, kc, tr(d), tr(d2), tr(bd) 
(136) 

T /7 An s,A s, ng , Ts, ATs, B bAB, Ts, ATs, B dAB 

with respect to the Hami l ton-Cayley  theorem for symmetrical matrices. For 
the construction of constitutive equations by polynomials  we use the 
representation theorems of  Smith (1965) and obtain 

E~ = E~(T, T~, kM, kG, tr(d), tr(d2), tr(bd),  

T, 1~ AB s,A s, ng , Ts, ATs, B bAB, Ts, ATs, n d a n )  

"rls = ~s( % . . . , Ts, A Ts, B dAB)  

QK KKAT +AdKAT~A, KKA._KgAB+~AB (137) $,A , "-- 

~ K  -~- E s,A s ,A,  8 : =  8g An + KAT~ + ~dKAT. KA ~ban 

T KL = AgKL+ BbXC+ CdrC+ DT~,AT~,ngB(KgL)A+ ETs, aTs, ngn(Kd L)A 

+ FT~,AT~,Bgn(Kb L)A + Gd(a K bL) A 

where K, t~, e, e ~, h, ~, A , . . . ,  G depend on the list of  variables (136). 
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5.2. Newtonian Fluid 

We now discuss a Newtonian fluid in the interface. To that end we 
restrict the list of variables to a linear dependence of  the thermodynamic 
variables; in particular the stress in the surface depends linearly on the 
velocity gradient dAn = W(A,B)- WbAB and terms of  the fo rm gABTs.ATs, t~ are 
neglected. The scalar-valued quantities are given by 

Es = Es( T, T~, k~ ,  kc ,  tr(d), tr(bd)) 

r/s = ~%(7, �9 �9 �9 tr(bd)) 

The vector-valued quantities have the representation 

QA = (_KAB + KdAB) Ts, B 

f ~ A  = ( c A B  -t- e d  A B )  Ts, B 

and the stress tensor has the form 

T KL = crg KL + ~b KL + rid KL + ~gKL tr(d) + pb KL tr(d) 

+ ~gKL tr(bd) + X b a B  tr(bd) + ixd~a K b L)a 

where 

AB --_ KgAB AB egAB K "[- Kb  AB and e = + ~b AB 
1 2 1 

~, ~, e, and ~ are functions of  7, Ts, kM, ko, tr(d), and tr(bd); and K, e, or, 

A, 71, ~, ~', ~, X, and/x  are dependent on Y, Ts, kM, and kc. 

5.3. Restrictions of the Constitutive Equations by a Surface Entropy 
Principle 

The constitutive equations can be further restricted by a physically 
motivated principle, namely an entropy principle given by Miiller (1973). 
Moeckel (1974) has given a modification for material interfaces and the 
extension to arbitrary interfaces is straightforward�9 Let us now apply the 
entropy principle in the modified form given by Grauel (1980)�9 We assume: 

(i) On the interface there exists an additive quantity called the interface 
entropy ~Ts which is balanced by 

O t ( 'y'rl s ) W -~g ]/'O s + ( "y'o s w a + f~ a ) ; A [ p "O ( l) J -- w J ) + dik J ] e j -- 3toms = "17".qs (138) 

where ~'.s is the production of  entropy. 
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(ii) For each thermodynamic process 2 on the interface the production 
of entropy 7r,, cannot be negative; therefore we have 

rrrls -> 0 (139) 

o r  

Ot( ]/T]s ) Av~g ]/'qs -[- ( ]/TlsWA'4, - ~ A ) ;  A "J-(p'l~( V j -- WJA ) -[-~J)ej -- I/Girl s ~ 0 (140) 

The interface entropy r/~ is a scalar-valued quantity and the entropy 
flux (I)a is a vector-valued quantity on the interface. Both 7/~ and (I DA must 
be given by constitutive equations�9 Furthermore, the quantities enclosed in 
the angular brackets must be given by constitutive equations�9 The specific 
supply of  entropy on the interface is given by the supplies of momentum 
and internal energy 

]~Gins = a k F k T  + bray (141) 

where the scalar-valued coefficient b depends on scalars and scalar-valued 
invariants; the vector-valued coefficient ak depends on vector-valued quan- 
tities. The entropy inequality (140) takes the form 

O , ( ]/~s ) "~--~g ]/~s -~- (]~7Is wA -{- f~)A ) ; A 

+ [ prl ( vJ - w{ ) + dY ]e) - ( akFk + brs) y >-- O (142) 

Mathematically, each solution of  the field equations with respect to initial 
and boundary data is a thermodynamic process. But we consider only 
solutions that do not violate the additional restrictive requirement (139) in 
the form of  the entropy inequality (142)�9 Therefore we obtain the required 
interfacial field ]/(u A, t), wk(u A, t), and Ts(u A, t) from the inequality (142) 
if we take into consideration the field equations as constraints. Liu (1972) 
has explored these facts in a lemma based on an algebraic equivalence 
between the system of  field equations with (142) as constraint and a new 
inequality obtained from (142) one introduces into it the field equations 
multiplied with Lagrange multipliers�9 Liu has shown that the new inequality 
is valid without any restriction to the space dimension and that it holds for 

2The constitutive equations together with the equations of balance (balance of mass density, 
balance of momentum, and balance of internal energy) represent the field equations for the 
fields, namely the field of the density % the velocity w k, and the temperature Ts�9 A thermody- 
namic interfacial process is mathematically defined as follows: Each solution of the field 
equations with respect to initial and boundary data is called a thermodynamic process. 
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analytical fields. I use 
inequality in the form 

0 t (')t~s) "~ ~g ")tTls + ( ")IT, s WA + (~a); a "[- [pT] (V j -- W j) + (~J] ej -- a k F k y  -- brsy 

-- A V( o,T +2-~ T + ( TwA);A W [p,~( oJ-- wJ)ej] ) 

-- AW( Ot( Tw) + g-~" TW + ( TWWA).A + "yW BW B -k- ' ywA(~  WBbAB 
2g " " 

A k j ) - T ;a-- TABbABk[Po-Oo-@(Oo--- wJ)ej -- tko-Jej]ek -- yF 

-- AWB( ot('yWB) 21--~g ~IW B "~- ( 'ywA(~ wB).A -- "yww AbB--  ")Iwg AB w,A 

- rw3~wCba+ Tab~ - TBA;A+ [p~vk| - wJ)ej - t~ej]gAnXk, A -- F B) 

- AE'( Or( TEs) + ~g TEs + ('yE~wA + QA);A-- TkAwk; A 

+[p(e+�89 ~ 0  (143) 

This entropy inequality must be valid for all thermodynamic fields -y(u A, t), 
wk(u  A, t), and Ts(u A, t). At this moment we are not interested in calculating 
these fields. However, we are interested in finding further restrictions for 
the constitutive equations (137). The entropy inequality (143) contains five 
Lagrange factors, namely the scalar-valued factors A v, A w, and A e~ and the 
vector-valued factor A WB. These factors can depend on 

y, Ts, Ts, A, dan, gAB, and baB 

according to the principle of equipresence of Truesdell and Toupin (1960). 
In particular these factors can depend on the same set of variables as the 
constitutive equations for scalar-valued or vector-valued quantities. 

If we introduce the constitutive equations (137) into the entropy 
inequality (143) and perform all differentiations step by step, then we obtain 
an inequality that is linear in the derivatives 

Otw, O~w B, Oty, O,T~, OtTs, A, OtdAB , W;BA, ~/,A 

Ts,(BA), dBC, A, and bBc;A (144) 

The inequality (143) holds for the analytic fields y, w, w a, and T~ and it 
must hold for arbitrary values of derivatives of these fields�9 The inequality 

this algebraic equivalence and obtain the new 
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could be violated by an arbitrary choice of values of these fields unless the 
coefficients of the quantities (144) are identically zero. From this we conclude 
that the following conditions must be satisfied: 

{0,w}: A" =0 (145) 

{atwB}: A ~" = 0 (146) 

{0,y}: A~ , =Oyrt,_AE OyEs (147) 
0y 0y 

{0,Ts}: 0r/s AE 0Es=0 (148) 
oTs oT~ 

{0,T~,A}: 0"Os A~ OEs =0 (149) 
O Ts, A o Ts, A 

{OtdAe}: Ons A~ OEs =0 (150) 
OdaB OdaB 

Ors A~ OEs 
{W;Bc}: ObAB ObAB =0 (151) 

{')/,A}: Of~A-- AE" OQA = 0 (152) 
0y 0y 

{Ts,(AB)}: ----O(~(A A E" oQ(A=o (153) 
OT,,8) OTs,8) 

of~A A E  ̀ooA = 0 (154) 
{dBc;A}: odB----c - OdBc 

{bBc;A}: Odpa ) A E" oQA) =0 (155) 
Obmc ObB(c 

We remark that there remains a residual entropy inequality, which will be 
considered later. The residual entropy inequality is linear in the supply of 
internal energy by radiation and in the supply of momentum. The inequality 
could be violated by arbitrary values of rs and F k unless 

b = A E, (156) 

and 

ak=0 (157) 

Consequently it follows that the supply of entropy in (138) is proportional 
to the supply of radiation and is given by 

cr,, = AE, r, (158) 
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We now perform the interfacial analysis of exploiting the interfacial relations 
(145)-(155). t f  we take into account the constitutive equations for a 
Newtonian fluid (Section 5.2), then we get restrictions of the constitutive 
equations. Moreover, we obtain an exact interfacial analysis by combination 
of certain interfacial rdat ions and some conclusions. Because of the sym- 
metry of  T~,AB with respect to A and B, the entropy inequality contains 
only the symmetrical part of  

0__~ _ Ae ~ oQ A (159) 
O Ts, B o Ts, B 

We conclude from the representation of ~A and QA that (159) has no 
antisymmetrical part, and with respect to the algebraic independence of the 
surface tensors gaB, bAa, and d AB among one another we have 

K = A~se, K = Ae*e, K = Ae, e (160) 
1 1 2 2 3 3 

Furthermore, 

dpA= A~ . QA (161) 

From the relations (152)-(155) there follow restrictions for the auxiliary 
function AE~(y, Ts, T~,A, dAB, gA~, bAB). If  we introduce (161) into (152), 
we obtain 

a A ~ ( 3 , ,  �9 �9 �9  bAR) Q .  = 0  

O3' 

and if Q A ~  O, we have 

0AE~(7, �9 �9 �9 bA,) 
0 (162) 

0y 

Condition (162) means that the function AEs(y , . . . ,  bAB) does not depend 
on the density field 7. Moreover, we conclude from (153) and (154) that 
the independence of  Ts, R and dBc consequently follows AE~(Ts, gAB, bAB). 
Because A~s(...) is scalar-valued, we write 

AE~(Ts, k~, k~) (163) 

From (155) we obtain the representation 

Q(A{ (~ OA ' (  Ts, . . . , k~) OAe~( Ts, . . . , k~) ) g C)B 
-O-kM- ~- 2 k~ -O'-k-~ 

OA~s(Ts, . . . ,  k~) } 
ok-~ b c)~ = 0 (164) 
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where we use 

okM 1 CD OkG bCD 
ObcD 2 g and ObcD-- 2kMg CD-- 

Since the metric tensor gAB and the curvature tensor b AB are algebraically 
independent of each other, we conclude that AEs(...) is not dependent  on 
the Gaussian curvature kG and the mean curvature kM: 

AE'(T,) (165) 

Next we investigate the interfacial relations that relate the internal energy 
Es with the entropy ~Ts together with the constitutive equations, in order to 
obtain restrictions for the constitutive equations. To that end we rewrite 
(151) in terms of derivatives O~s/OkM and O~7.,/Oko and similarly for Es and 
obtain 

O~Ts A e 0G  
OkG "0--~c = 0  (166) 

Otis AE OEs 
OkM ~O--~M = 0  (167) 

Indeed, we obtain restrictions for the interracial thermodynamic quantities. 
By differentiating (148) with respect to kM and differentiating (167) with 
respect to Ts and subtracting the equations from each other we get 

OA e-, OE~ = 0 
OT~ okM 

and if OAFs/OTs ~ O, then OEs/OkM = 0 and 

Es(y, Ts, ko, tr(d), tr(bd)) 

The interpretation is easy: The internal energy does not depend on the 
mean curvature kM but on the present state. The curvature properties of 
the present state can be characterized by the mean curvature kM and the 
Gaussian curvature kc. Further exploitation of (148), (150), (151), (166), 
and (167) gives 

Es = Es(T, r , )  (168) 

and 

Consequently, 

r/s = r/s(y, Ts) (169) 

A~,_OT~Ts AEs OTE, (170) 
OT ay 
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From the expression (170) we conclude 

A v = A~(y, T~) (171) 

With respect to the foregoing results we conclude that the residual inequality 
(143) can be written in the form 

[_y2(OrlS_AE~-~2)gAB + AEsTAB dAB +OA-A~E*E*QATsA >O (172) 
kay o y /  J o G  " 

We identify the expression (172) with s and consider s as the product ion 
of entropy in the nonequilibrium state. In the equilibrium E we obtain 
further restrictions for the stress tensor T AB and some interrelations. Equili- 
brium is characterized as a thermodynamic process in which all constituents 
are at rest in one frame of  reference, so that velocity components  of  the 
velocities in the bulk media  or interfacial velocities are constant, and all 
diffusion fluxes and all relative velocities are zero. Moreover,  the tem- 
perature is uniform and t ime-independent  for both the bulk materials and 
the interfacial materials. This means that Ts = T+ = T_ = T. Consequently,  
no heat flux exists in both the bulk media and the interfacial material,  and 
no exchange of heat between the bulk media and the interface occurs. The 
product ion of entropy (172) depends on 

7, T~, Ts, A, dAB, kM, kc, tr(d), tr(bd) (173) 

where the dependence on the mean curvature kM and Gaussian curvature 
is only implicit. The deformation gradient on interfaces dAB is a symmetrical 
2 x 2 tensor, where three components  are independent.  Therefore, dAB and 
tr(d) are not independent  of  each other. For the exploitation of (172) it is 
convenient to perform a decomposi t ion of the deformation gradient into 
two parts, namely into the trace term and a traceless part  dAB. The traceless 
part  of  dAn is given by 

aAB = dAB --l  dC gAB (174) 

where dCgAB is the trace term. Now we exploit (172) for a Newtonian fluid. 
We consider the production of  entropy in the form 

X = - ~ 2 ( a n S - A  < oE~\ c k a y  Oy) dc+A%{~ tr(bd)+'[aABaAB+�89 

+ ~(d c)2 + (v + ~)d~  t r ( b d ) + x [ t r ( b d ) ]  2 

OA~ A > + I~[SABdAB +�89 c t r ( b d ) ] } + - ~ ] Q  Ts, A--O (175) 

where 
C 1 D EF 

'XAB = b(AdB)c--~b(EdF)Dg gAB 
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The entropy production ~ takes on its minimum, namely zero, at the 
equilibrium. Necessary conditions for the minimum value of ~ are 

oE [ oZ oY~ 
OTs------~a, I E ---0, OXi E = 0, 0 t r O d )  E = 0 (176) 

where Xi represents the three independent quantities of the deformation 
gradient. From (176a) the trivial condition follows 

QAIE = 0 (177) 

i.e., the heat flux on the interface must be zero. The condition (176c) 
represents a restriction on the scalar-valued coefficient A, namely 

Ale =0  (178) 

From (176b) it follows that 

o'[~ = - 7  ~ -0--Y7 (179) 

where we have used the result (Grauel, 1980) Ae(Ts)]~ = T; -1. If  we take 
the condition (148) at equilibrium and take into account (179), we obtain 
the Gibbs equation 

' r + (180) dmlE = Z L  OT~ \ 07 y2,# 
and an integrability condition for 'r#siE in the form 

OO']E 
d ln(1/Ts) OTs 

(181) 
dTs o-lE ay 

At equilibrium the matrix of the second derivatives must be positive semi- 
definite. Therefore we can write 

02s 

axi ax s 

02s 

OXi O T~,A 
aZz 

aTs, A aTs,8 

02s 

OXi a tr(bd) 
ozz 

OL, a Otr(bd) 
ozE 

0 tr(bd) O tr(bd), 

=positive semidefinite (182) 

In particular we obtain from the condition (02E/OXi 0Xj)IE-> 0 

( 2 f f + n ) ] E - > 0  

and 

~?[E >--0 

(183) 

(184) 
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Furthermore, it follows from [02Z/OXi 0 tr(bd)]lE -> 0 that 

[2 (u+  s  ->0 (185) 

The condition [02E/0 tr(bd) 0 tr(bd)][E -> 0 is restrictive for the scalar-valued 
coefficient X; we obtain 

xl~_>O (186) 

If  we take into account the representation (137), then from 
(02Y~/OTs, a OTsw)]z>-O the condition follows that the tensor-valued heat 
conduction coefficient must be greater than or equal to zero: 

KAB]E~O (187) 

Consequently, from (182) 

XIE (2~" + r/)lE - [2(v + ~) +/z]21je (188) 

6. REVIEW OF A M I X T U R E  OF C H E M I C A L L Y  R E A C T I N G  
FLUIDS 

In a previous paper (Grauel, 1982a) we have considered an interface 
Y.(t) with a mixture of A fluids (6 = 1 , . . . ,  A), which divide a mixture of v 
fluids (a  = 1 , . . . ,  9) from a mixture of /~ fluids (/3 = 1 , . . . , / ~ ) .  The fluids 
are heat conducting and inviscid, and it is assumed that the interface is 
permeable and therefore in heat and material exchange. For the interface 
we have to calculate 4A + 1 fields as function of the surface parameters u 1 
and u 2 and the time t, namely the partial densities y6(u 1, u 2, t), partial 
velocities w~(u 1, u 2, t), and temperature Ts(u 1, u 2, t). The density of  the 
mixture, the velocity of the mixture, the diffusion velocity, and the relative 
velocity are defined by 

A 

y=Y~ y6 
6=1 

wk= ~ Y~w~ 
~=1 T 

U~ = w~-  w k (189) 

k W ~ = w ~ - w x ,  6 = l , . . . , A - 1 .  

We assume that the material of  one fluid with the density 7x is 
homogeneously distributed on the interface, whereas A -  1 fluids can be 
exchanged with bulk fluids. For the determination of the 4A + 1 interracial 
fields, we have 4 A + l  balance equations (105). This system of  partial 
differential equations does not represent a closed system of  equations. The 
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system can be closed by supplementing constitutive equations of the form 
(108). The constitutive equations relate the quantities 

Zr, Es, rls, m k T~ A ~, qA, d)A, (190) 

to the surface fields. The constitutive quantities (190) depend on 

~'~ = {T~,  Ts ,  'Y~,A, Ts, A, wk, xk, A, ekA} (191) 

Therefore, the general form of (190) is given by 

C = c~(f~) (192) 

Independence of a special system of coordinates requires invariance in the 
form of (192) with respect to Galilean transformation. Therefore, we require 

cr = cr (193) 

o r  

where 

C = qg(E) (194) 

= {3/8, Ts, "YS, A, Ts, A, Ws,  W A, gAB, bAB} ( 1 9 5 )  

If we take into account restrictions imposed by transformation of the surface 
coordinates, some simplification with respect to the normal velocity W~ and 
the tangential velocity W A and the fact that the scalar-valued functions 
depend only on scalar-valued quantities, vector-valued functions on vector- 
valued quantities, and tensor-valued functions on tensor-valued quantities 
that are combinations of the list (195), it then follows that 

Z~ = Z~('y~, Ts ,  kM, k c )  ( 1 9 6 a )  

es = es( y~, Ts, kM, kc ) (196b) 

"r/s = r / s ( ' y~ ,  Ts ,  kM, k c )  ( 1 9 6 c )  

h - 1  
At~ = Y, M~:Wr (196d) 

r 

A A--1 

,j/[~B = mgA.l TsA"k" r=  1 ~" m2 8~" ")1r ~=1 ~ m3 8B~A" W~A (196e) 

A h--1 
�9 KBA BA WCA (196f) qB= KBA Ts, A + Z 2 r " "y~'A + Z K r " 

A A--I 
BA BA ~P ~A d~B---tP Ts, A "-k E ~% "'YC, A "Jr" ~ " WCA (196g) 

1 ~'=1 2 ff=l 3 

T AB = -o'~g AB -'b" ,'i',~b AB (196h) 
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where 

mffA1 = M8"1 gBA + M2 8 . baA, m2 acaA _-- Msr . g BA q.. M ~  . b aA 

tuBA _ gBA + bBA 3 8, -Ma ,"  Ms~" 

(196i) 

t(BA ----- r ?bBA ' KBA-~ Q3 ~ " g BA'~ 9;~ " bBA 
1 2 ~ 

K ~ a = g c ' g " a + Q 6 , ' b " a  

(196j) 

BA = (~ . g BA ~. ~) �9 bOA ~ rBA = ~ . g Ba + ~ . b BA 

1 1 2 2 3 4 

BA gBA bBA 
3 5 6 

The scalar-valued coefficients 

(196k) 

M~, Mso Ms,;, . . . ,  M8r Q, Q, Q o - - . ,  Q~, ~b, th, ~br ~b~., ~b~, o'8, r8 
1 2 3 6 1 2 3 5 6 

are functions of the scalar-valued variables Ys, Ts, kM, and kc. From the 
condition that the moment of momentum is a conserved quantity, we obtain 

A A 

E J/8 =0  or Z Ms~ =0  (197) 
8 = 1  8=1 

A A A A 
E M~ = 0 or E mBA = 0, E BA BA msc =0, Y~ (198) 

8=1 8 = 1 1  ~=1 8=13j~8 '~  - ~ ' 0  

Moreover, we obtain further restrictions by the entropy principle in the 
form (140), where 

ytrn ,= ~ akF~ya~ k + b r s y  (199) 
8=1  

We obtain a similar entropy inequality to (143) with additional quantities 
a~ and b and Lagrangian multipliers A ~, A w~, A w~, and A ~ which depend 

. W a ,  gas ,  and b a B .  The entropy inequality depends on 3'8, Ts, Ya,a, TsA, Ws, A 
linearly on the derivatives 

B 
OtW8, Ot WBt~, (gt'YS, OtZs, WA,(AB), "YS,(BA), Ts,(BA), W8,A, WS, A, bCD;A 

and it holds for all analytical fields Ys, wa, w A, and Ts. From this entropy 
inequality we obtain further restrictions for the constitutive equations 
(196a)-(196h) with the technique as described in Section 5,3. For more 
details see Grauel (1982a). 
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Let us consider the residual inequality s as a measure of  the production 
of entropy in a nonequilibrium state. I f  we require that s is linear with 
respect to Y~.A, then we conclude from s that K BA 2 c = 0  in (196f) and 

m ~  A = g"A{eo' . /o~'~- "r. eg~/o~,~} (20o) 

in (196e), where we have introduced the chemical potential ~0 without 

velocity-dependent terms by additional considerations. We find for the 
const i tuent /3 in the mixture 

~t3 = e~ - T~r/, + - - +  y ~$~ - 
y a=l 078 

o r  

0~,(e~- Lm) 
(202) 

~" - 0 ~ , ~  

cr is the surface tension, Ts is the surface temperature,  and es - T,~Ts = F is 
the free energy. The residual inequality contains heat flux terms, particle 
diffusion terms, and the affinity of  the chemical reactions in the interface, 
which couple together in specific transport  processes. These couplings 
together with the positivity of  the entropy product ion yield restrictions on 
the transport  equations, which we will not discuss at the moment.  The 
entropy production s takes its minimum in the equilibrium state E. Hence 

~';m8~81 = 0  (203) 
8 = 1  E 

where r = 1 , . . . ,  n. Equation (203) means that the chemical affinity is zero 
in a mixture in the state E. Furthermore,  we find 

2kMcr~ = - [  p= ] (204) 

From this it follows that the product  of  mean curvature km times surface 
tension cr~ is related to a pressure jump on the interface. Moreover,  K aB - 0 

1 

follows in (1960. Let us put together some results of  our theory. The Gibbs 
relation on the interface is given by 

- - -  - -  ~ L~--~y + 7 ( e , -  dy~ (205) 

The internal energy and entropy depend on the interface density of  the 
constituent 6 and the interfacial temperature 

es(y~, T~) (206a) 

~7, (Ya, Ts) (206b) 
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We find for the heat flux and entropy flux the representation 
A--I 

�9 . AB l , l f  ~" (207) qa _ __KABT,  + ~ ~ rv B 
1 s,B ~'=1 

1 A 1 A 

f~A = "-~s q --'~s S~__ l ]lsUA~s 8 (208) 

Furthermore, the interaction normal to the surface contains in lowest order 
only one term, namely a friction term 

A--1 

.lilt8 = Z Ms~" W~ (209) 

and the interaction tangential to the interface depends on a temperature 
gradient, a friction term, and we have a dependence over a density gradient 
of  the interfacial tension and the interfacial chemical potential 

A--1 A 
~ AB lI[/~ -.l- AB ~I2=mABTsB + X ~,6~ , , B - s  Z {Oo'6/Oy6-ysO~8/Oy,}y~,B (210) 

1 ' ,~=1 ~r=l 

Moreover, the partial stress tensor has the representation 

T~ B= -o'r T~). gab (211) 

and the stress tensor in the mixture is given by 

T A B =  _ _ o r ( y s ,  T s ) .  gAB (212) 

where 

( r=  E o ' 8=y  E Y6 (213) 
8 = 1  6 = 1  0 ' ) /6  

7. CONCLUSION 

In the present paper, we have investigated a nonequilibrium thermody- 
namic field theory and have studied thermodynamic processes as well as 
the nonequilibrium behavior of  thin regions and interfaces. Furthermore, - 
we have given a rigorous approach to constitutive equations, for a viscous, 
heat conducting fluid and for a mixture of  chemically reacting fluids that 
are heat conducting. We have not postulated the Gibbs equation on inter- 
faces, but we have seen that this equation can be deduced from an interfacial 
entropy principle and integrability conditions on interfaces. The interaction 
force ~/a  tangential to the interface depends on the scalar-valued coefficient 
of the surface stress and the chemical potential. Moreover, the scalar-valued 
coefficient of  the interfacial tension of the constituent 6 depends only on 
the density 3'8 and the interfacial temperature Ts if the constitutive equations 
do not depend on density gradients YS, A. 
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The me thod  is not  restricted to chemical ly reacting fluids and viscous 
fluids and the concept  o f  this field-theoretic approach  can be appl ied to 
fluid films, interfacial fluid membranes ,  b o u n d a r y  layers, layered structures 
(liquid crystals), etc., with the possibility o f  momen tum,  heat,  and material 
exchange with the sur rounding  media. Equa t ion  (69) shows that we can 
take into account  density distributions and chemical ly active materials. By 
a limiting process e ~ 0 we obtain a closed set o f  b o u n d a r y  condit ions for  
a moving boundary .  This b o u n d a r y  can be semipermeable  and chemical  
reactions can occur  in the interfacial fluids. Moreover ,  the theory in the 
case e ~ 0 can be appl ied to phase b o u n d a r y  problems and stability consider-  
ations o f  fluid interfaces. 
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