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Fundamentals of Surface Thermodynamics

A. Grauel'

Received February 2, 1988

The nonequilibrium behavior for mixtures of fluids in interfaces is discussed. In
particular, a thermodynamic field theory is given for media in thin, curved regions
(interfaces with finite thickness), which separates two media with different
physical properties. The moving interface is considered as semipermeable and
a generalized transport equation and specific balance equations are derived. A
systematic investigation of constitutive equations is made and in the limit as the
thickness of the interface goes to zero it is shown that all relevant interfacial
relations can be found.

1. INTRODUCTION

We study a moving three-dimensional region embedded in and interact-
ing with a three-dimensional continuum. One dimension of the moving
region is much smaller than the other two; accordingly, such a thin region
can be considered as an interface with finite thickness. This interface can
be considered as a model for a membrane. For such an interface we derive
a generalized transport equation and specific balance equations for a multi-
constituent fluid in heat exchange and material exchange with the bulk
fluids. We study the limiting behavior of the transport theorem, the specific
balance equations, and the interfacial quantities as the constant thickness
¢ of the thin region goes to zero. From this limiting process we obtain exact
definitions of the surface quantities and interfacial quantities.

Our main interest is to formulate a thermodynamic field theory for
discontinuous media with respect to application to a viscous interface and
a mixture of fluids in two dimensions with exchange quantities. To that end
we find constitutive equations for one viscous fluid in the interface and a
mixture of chemically reacting fluids in an interface. By using mathematical
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reduction principles we can restrict the functional form of the constitutive
equations. We obtain further restrictions by an entropy principle on the
interface (Grauel, 1982a). This entropy principle is physically motivated
and it expresses the fact that for all times the entropy production is not a
negative quantity, in agreement with physical experience. Moreover, we
assume that this principle is valid for all thermodynamic processes, where
we consider a thermodynamic process as a solution of the field equations
for certain initial and boundary data. The entropy inequality on the interface
selects such thermodynamical processes from all possible thermodynamic
processes of the field equations that do not violate the entropy inequality.
We obtain restrictions. From these restrictions, we obtain surface relation
and laws for interfaces by combination of these relations. The integrability
condition of some surface relations is used to restrict the list of arguments
in the thermodynamic quantities. If we introduce the reduced constitutive
equations into the balance equations, we obtain the required field equations
for the thermodynamic surface fields.

The use of an entropy principle as a constraint to obtain restrictions
for the constitutive equations is accepted in mathematical physics and
theoretical thermodynamics. To discuss the nonequilibrium behavior of
interfaces, several authors start with the Gibbs equation and combine this
equation with the balance equations. In our approach, the Gibbs equation
on curved interfaces foilows as a logical consequence from an entropy
inequality. Let us now specify the features of our approach.

2. PRELIMINARIES

There is an extensive literature on the geometry of surfaces (e.g.,
Eisenhardt, 1947; Truesdell and Toupin, 1960); McConnell, 1957; Kobayashi
and Nomizu, 1963; the geometry of parallel surfaces was treated by Thomas
(1965). Here we give two extensions: the surface geometry is time dependent
and the thin region is semipermeable. In the next two subsections, I assemble
some basic formulas of the geometry of parallel surfaces.

2.1. Surface Geometry

Let us consider a smooth surface =(¢) in the Euclidean space E* with
a set of orthonormal base vectors b, b,, b;. The position vector r of any
point P(u', u?, t) on a moving surface =°(¢) can be written in vector form

r=bx’, i=1,2,3 (1)
where

x'=x"(ut ), A=12 (2)
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The u” are curvilinear coordinates, called surface coordinates on °(¢), the
surface of reference, and ¢ represents time. Throughout we use covariant
notation and the summation convention. The quantity dr on a point
P(u', u”, t) directed tangentially to the u®-coordinate curve is

or
dr=—: du® 3
ou® (3)
where
ar ax'(u™, 1)
uP i guf 0B

and (3) in component form is
dx'=x'pdu® (4)

The quantities x' 5 are components in space (i =1, 2, 3) lying in the tangent
plane on P(u', u? t) directed tangentially to the surface coordinates u' and
u”. The square of the length of arc on X(¢) is given by (ds)’ =g, dx'® dx’,
and with (4) it follows that

(ds)zngBduA®duB (5)

where gap = g;x" 4®x” 5 is the metric tensor on the surface £°(¢) and g;; = §,
is the metric tensor in space E°. With g”® denoting the contravariant
components of g4, we have

gACgCB = chgCA = 5/13 (6)

where 83 is the usual Kronecker delta and C* =g*5Cy and C*=84C%.
The quantities ap are base vectors on the surface, together with the normal
vector
== (7)
la; x a,|
perpendicular to %(¢). The (ag, €) represents a basis on the surface. Equation
(7) written in components has the representation

1 _AB j k
e, =38""gux’ QX" 5 (8)

where the e-tensor in space is denoted by &, and *? is the contravariant
form of the e-tensor on surfaces defined similarly as the £-tensor in space.
One has

1/2

AB T1/2gAB or EaBT 8 €asB 9)

£ = g
and

AB A
& ECBZSC
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where 82 is the Kronecker delta on surfaces, g =det(g.z), and €45 and
€“? are two-dimensional permutation symbols with the properties €,,=
—€n=1,e%=—~¢e, =1,and €,, = €,,= €' =€?*=0. From (8) we conclude

that

ee' =1 and ex =0 (10)
hold at all times ¢. With the definition
bap= _xi,A®ei,B (11)
of the curvature tensor we obtain by differentiating (10)
bap=e,®x 4 (12)

where x' 45 =x' 45— x' - ['$p is the covariant derivative of x’ and 'Sy
is the Christoffel symbol on surfaces. From (11) it follows that e’ , = —bf\x’,c,
where bS = g“Pbga. The curvature tensor b, has scalar invariants

ky =3tr(bp)=3%b4  and ks =det(by) (13)
The derivatives of ky, and ks with respect to the curvature tensor are
dky 4 cp dka BC _ 1 BC
—= =1 d =2k -b 14
Py an Sbpe  Hv8 (14)
where we have used
bSbg=2kybs —ksd$ (15)

which follows from the Hamilton-Cayley theorem. The derivatives of some
surface quantities with respect to time t are given by

ax’ . , A .
2| = (0x) oLy = (v alu = v e H v (162)
or
ax’ . .
4 =p e —vh§x (16b)
at | ,B ! ’
where we have defined v(u®, t) = ve. Moreover, the following hold:
08aB
=== =2vb 17
Lr| =2 (17)
og
— = —4gk 18
ot | e gV (18)
oe; AB
i == i 19
a1 | e g UpXia (19)
ob
T?E c = 0,45 — 2kpVbap + ksgan (20)
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Furthermore, we use the following decomposition for the components of a
velocity field:

w! = we’ +w'x’ ,
2.2. Geometry of Parallel Surfaces

In this subsection we generalize the formulas of the surface in space
to a concept of parallel surfaces in space. We consider a smooth surface
2°(¢t) and erect the normal N to 2%t) in the direction of the unit normal
e to =%(¢). We denote by 2%(¢) the surface, smooth by hypothesis, obtained
by laying off equal distances ¢ along the normals N to 2°%r). Therefore
24(t) is to be parallel to the surface 2%(¢). The surface 2(¢) is determined
by

28(1): R=r+¢bie’, i=1,2,3 (21)

where R is the position vector of any point Q(u', 4% t) on the moving
surface 2°(¢) and r is defined by (1). Written in components, this is

S4(1): kK '=x(u?, 1)+ & e'(ut) 1), A=1,2 (22)

Varying the distance ¢ in (22), it is evident that any two surfaces must be
parallel and we speak of 3%(¢) as a family of parallel surfaces. Formally,
£e€[&, &), where 0> £,> —c0 and 0< §, <. In a later section we derive
balance equations and we consider £, and &, as unspecified quantities,
which are suitable chosen to describe a membrane of finite thickness. The
two surfaces £°(t) and 2%(t) are written briefly '(¢) and 2*(¢), which are
determined by

) k=Xt 0 +E - eut ) (23)

21 K =x'wh0+E e wh ) (24)
The middle surface between 2'(¢) and 2%(¢) is defined by the representation
(2) and we consider this surface as a reference surface in the sense that all
geometrical quantities of any surface 2°(¢) are expressible in terms of the
basic invariants of the reference surface 2°(¢). In the following, I cite some
basic formulas of the geometry of parallel surfaces for later application.
For a detailed account of the time-dependent geometry of parallel surfaces
and shells, see Grauel (1982b). From the concept of parallel surfaces it
follows that e;, the covariant components of the unit normal to X°(¢) at any
point P(u', u? t), are equal to the covariant components of ¢; at point
Q(u™, t) on =%(t), where Q is the crossing point of the normal N on
P(u', u?, t) and 2¢(¢). Therefore, we do not distinguish between e; on Z°(¢)
and e; on 2%(t). At any point on 2°(¢) we may compute the components
of tangent vectors similar to derivatives of (2),

Ki',A:Xi;A-{_g. ei;Az(ag_g. bg)Xi;B (25)
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A semicolon denotes covariant differentiation, and a comma denotes partial
differentiation in the following. At every point on the interface

k'a;=0 for all ¢ (26)
At the point Q there exist the components G5 = k', ®k;.5 of the metric

tensor expressed in terms of the basic invariants at the point P on the
reference surface, namely

GAB=(1_§2k0)gAB_2§(1_§kM)bAB (27)

where k,; and kg are the mean and the Gaussian curvature. For the metric
tensor G5 we may compute the inverse G*” such that

GAGE© =8¢ (28)

where 85 is the Kronecker delta. The curvature tensor B, = ~ei; A®K;c
in terms of the basic invariants of the reference surface is given by

Buc = tkggac+ (1 — Ekpr)bac (29)

The scalar invariants on the interface, namely the mean curvature K,, =3
trace (Bac) and the Gaussian curvature Ks =det(B,c), are given by the
equations

kns — &k,
Ky = —Mﬁé—;——c (30)
k
Ko=F 5 (31)
where F(£)=det(82—¢- b2), or by
F(&)=1-2&kp + Ekg (32)
In the limit £-> 0 we have
Li_r)r& Kn =ky and Ei% Kg=kg (33)
G denotes the determinant of the metric tensor G4g such that
G=Fg (34)

If e*® and e,p are alternating tensors on the interface, then we write
AB = GTV/2eAB and ean=G"%eap (35)

where £*® and ey are surface alternators, which are defined as skew-
symmetric matrices with the property £,,=¢'>=1. With respect to the
considerations on surfaces and (34), we obtain the relations

AB=F~1£AB and eAB:FSAB (36)

e

AB

e
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between the alternating tensors on interfaces and those on the reference
surface.

3. BALANCE EQUATIONS

We consider a moving three-dimensional region embedded in and
interacting with a three-dimensional continuum. The one dimension of the
moving region is much smaller than the other two; accordingly, such a
region may be regarded as a thin, moving region. There exist in the literature
many studies describing thin regions as shells of a material body. Here we
extend the shell theory. First, we consider the thin region as not material
(interfacial region). Second, we let the interfacial region in general consist
of other materials than the surrounding material, with the possibility of
interaction within and between the surroundings and the interfacial material.
We take into account heat and material exchange. We consider a body #(1)
with the volume 7'(¢). We assume that this volume is divided into the
volumes ¥¥(¢) and ¥ (t) by a thin region of parallel surfaces with the
body b(t) and the volume %(t). We have ¥ (1) =¥ () u ¥ (¢t)u U(t), and
the volume ¥(t) is bounded by ¥ (¢) =3V (1) ua¥ (1)U Q(t). Let ¥ be
an additive property of %(t), so that ¥, the amount of ¥ in a partial
volume » of AU(t), is given by

v, =J’ Y(x', 1) dr (37)

where ¢(x', t) is the density of ¥, . We assume that (37) holds for every
partial volume of %(t); moreover, we assume additivity of (37) to obtain
the total amount of ¥ in %(¢). The volume %(t) is bounded by the surfaces
3' and 3? and the lateral surface . The rate of change of ¥ in %(¢) is
given by

d¥

—d—t—=—<1>(\If)+@(\If}+9(lIf) {38)
where ®(¥) is the flux through the surface s% =X"'U 3*U Q. Here P(¥)
is a production term

P(Y¥)= J P-dr (39)

a

and it represents the production of ¥ in %, for example, the mass production
in % via chemical reactions, and

3’(‘1’)=J' S-dr (40)
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is the supply of ¥, for example, by radiation, in the volume % from the
outside of volume 9. Here P and S are densities, namely the production
density and the density of supply. The flux ®(¥) consists of two parts,
namely a convective flux ®(¥) and a nonconvective part

U

where ®' is the density of the nonconvective flux through 3%, dA is a
surface element of 9%, and 7; are the covariant components of a surface
vector perpendicular to 3%. From (37) and (38) we have

ij ¢df=-ci>(\p)+J @injdA+J (P+S) dr (42)

dt o
Let us now perform the calculation step by step. First we calculate the time
derivative of the volume integral (Truesdell and Toupin, 1960) on the
left-hand side of (42) and set

d

af [ .
o J'% Ydr= Lu py d‘r+£% s n, dA (43)

s* are the components of the velocity on the surface bounding the volume
U. We consider the density ¢ within 9(¢) as a function of the coordinates
k' given by (22) and the time «. Now we compute the time derivative of ¢
with respect to fixed surface coordinates u”* and distance £ and write

| _ow| Low
at | A, ol ax’

oK’

e (44)

A
u¢

where (9x’/3t)|,, are the components of the velocity of particles in the
surface 2(t). In particular the components of the velocity in 2'(t) are

ark
= =we"|, 4. — & WX g ? (45)

A
u”. £

s
1 at

and analogously for g"‘ if we change ¢, by &,. From equations (44) and (45)
we have

L4
ot

_oy
oot

- Wa_d/*‘ 8w ¥ ¢ (46)

uA,§ 8§

where i/ 9¢ represents the normal derivative and ¢ - the tangential deriva-
tive on an arbitrary surface 2 at the distance ¢ from the reference surface
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3% With dr= F(¢) d¢ do and some manipulations we obtain

[ R

—dr= — —-—w—

a(r Ot sty WOy, & 1uAe
+(§gBCW,Bl//,C),u*‘,§}F(§) d¢ do (47)

It is suitable to rewrite the quantity (9y/9&)F (&) as a(YF(&))/9¢ and
analogously for the quantities in (47). After some straightforward manipula-
tion on (47) we have

J %dmj {mwfw—w[{f’(a«/fﬂ
() =0 s g s

&, &
+ W.ac J fDAC(f)‘l’df‘*‘gACW;AJ f—F(f)llf,cdf} do
&

£

(48)
where
Y= J F(&)y d¢ (49)
s &
D*B(¢)=F(£€)g*"+E*?(¢) (50)
E*%(&) =—Ekog™? + £0°° (51)

with the brackets [ -] we have introduced the jump of the physical quantity
¢ on any thin region, which is defined by

[F(&)¢]=F(&)y),,— F(£) W, (52)

¢r|§2 is the value of the function ¢(u?, ¢, t) for £ = ¢&,. The quantity F(&) in
(52) is defined by (32) and the quantities F(¢,) and F(¢,) are limiting values
of F(¢) on the surfaces 3" and X7, respectively. The surface integral of (43)
has three parts, namely

§ n[/s'j*qjdA=J l/fs'jejdEZ—J' ¢5jejd21+J vs' dQ, (53)
o 52 2 ! 1 Q Q

The components of the velocity s* in the lateral surface (¢) are given by
$=we"+ k" 41"~ fw px* cg®c (54)

where #” are the components of a velocity in the surface Q(¢). We refer
the interfacial quantities to the reference surface X°(¢), where the geometrical
connection between X'(t) or 2°(¢) and 2%(t) is given by F(¢), equation
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(32). The surface elements are given by dX=F(¢)do and dQ;=
Dy, ex, en® d¢ A (Grauel, 1982b). After some mathematical operations
we obtain

&
45 vs'n, dA=j D{w[{F(fww(qu);A—(W;c I gD df) } do (53)
oU 3 s £ ;A
and (43) is given by
d

—J ¢dT=J {a,¢+£¢+(¢uA);A+w;A¢A} do (56)
dt Py 50 s 2gs s

where

1

&
Y= —J [EA(&),c + D (&), w1 dé (57)
The nonconvective part of (42) can be expressed by l

J (I)jnjalAzj~ d)jejdzz-—J @jejdﬁl-l—j CIDdej (58)
aU(1) 22(1) sin)

Q)

where ® is the density of the nonconvective flux through 6%. With Stokes’
theorem, equation (58) takes the form

j ©/n; dA =J {IF(O)D]+D* 4} do (59)
ou =°
and ®* is given by
&
D=y, 5 J' &/ DB dg (60)
&

Now we calculate the convective part of (42),

e (vj—g'j)ej de—j

b A)

&)= J

22(0 1
| v, (61)

Q1) Q
v/(x', t) are the components of the velocity in %(t) and the s/(x’, t) are

defined on the surfaces X'(¢) and 2°(¢). The gj(xi, t) is defined by (54).
Using Stokes’ theorem and by some manipulation, we have

d(¥) =j AF@Y- (07 = )] +d%,) do (62)
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where

A & )
o4 = J Y- {(vx’ g+ Ew. ) DA (£) — F(&)u"} dé

£

Finally, we have the explicit expression of (42),

J {a,¢+£w+(¢u*‘);A+W;At/f"} do
2t) s 2g s 5
= J A H[F(&)De ]} do

—Lﬂ (B4 A+IF(©)4- (o =)l do+ J (p+s)do

The last term in (64) has the simple form
&
J (P+8S) dT:J J F(&{P+ S} d§da'=J’ (p+s)do
% 2 Jg =0

where the production can be written

&

p= J F(&)Pd¢

&

and the supply has the form

&
s =J' F(§)S dg

&

871

(63)

(64)

(65)

(66)

(67)

Equation (64) is valid for arbitrarily small areas on the reference surface

and therefore we obtain a local equation of balance
Dt g (i 0487,

+IF(E Y- (v —s))e+Pe}]=p+s

(68)

which is valid for all points in the thin region. The quantity ¢é =& — & is
the thickness of the interfacial region and the other quantities are defined by

&
?=J F() dg

&

(69a)
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&
gt = —J (E*B(&)p.g+ D*2(£),pp) £ dE (69b)
I
&
%= x; J ®'DPA(¢) d¢ (69¢)
&
(£ ]
&%= | YD (&)(vx’ 5+ éw,p)— F(E)u™y} d¢ (69d)
v &
(£,
p=| F(&Pd¢ (69¢)
v &
"
§= F(&)S d¢ (69f)
v
and
D*P(¢&)=F(&)g*® + E**(¢) (70)
E*?(§) = —€kog™" + £b™° (71)

4. SPECIAL EQUATIONS OF BALANCE

In this section we discuss special equations of balance for mixtures of
fluids in thin regions that are in heat and material exchange with the
surrounding media. To do this we specialize the transport theorem to the
balance of mass, momentum, internal energy, and entropy by identifying
¥, ¢4, ®*, and ®* with physical quantities in the thin regions. In a later
subsection we study the limiting behavior of the transport theorem (68) and
the quantities (69)-(71) to obtain the transport theorem on surfaces and
interfaces.

4.1. Equations of Balance for a Mixture of Fluids in a
Thin Region (Membrane)

With the definitions in Table I we obtain the equation of mass for §
constituents of fluids in the thin region in the following form:

atrs+§ggrﬁ+(F6u§‘+A?);A+F?w6;A+HF(§) ' Pa” (U{J_S'j)ej]] =ps (72)
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Table I. Notation for Mass, Momentum, Energy, and Entropy in a Thin Region

A

] A o4 PA )4 s
Mass of the constituent & T, rs 0 Ay 0
Moment of the constituent & ysX& Rka —TkA A mk %%
Energy of the constituent & v;(,65+3%5%3) af ~Ti% +Qs B7 o5 TsFixi+Tsrs
Entropy 1, MA ol N2 a, 0
where
re,
Ts=| F(&)psdé (73a)
v &
A [ £ B A
A B
rs= [E (f)Ps,B"D (€).pps]€ dE (73b)
Jé&
[ A A
A -A i AB B
As = ps[ F(&)(v5 —u”)+ux’ sE”7(€) + éws,pD7(£)1dé  (73c)
L&
r §2
ps=| F(&)msd¢ (73d)
L3

In these formulas it is assumed that the density of mass p(u®, &, t) depends
on the surface coordinates u®, the distance from 3°, and time f. Therefore,
I's represents the mean density distribution over the distance £ Here p; is
the production of mass due to chemical reactions and consequently we have
one part of the interaction force and a production of energy due to chemical
reactions. Let us assume that the number of independent producers of mass
is less than A. The numbers {5 are called stoichiometric coefficients and
they specify how many molecules of mass m; are created in the reaction r.
We require that the mass is a quantity conserved in each reactionr=1,..., n
Therefore, there are n equations for n independent chemical reactions.
Hence

2 Lsms =0 (74)

With respect to the fact that in each reaction r it is possible that a certain
constituent can be produced or destroyed, we introduce the quantity z, as
a quantity that depends on the material in the thin region. For the production
of mass in the reaction p we have

75 = {3Ms2, (75)
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In a mixture

n
T = Z é’ngZr
r=1

Grauel

(76)

In the following investigations we consider the z, as quantities that depend

on the thermodynamic fields and the curvature properties.
For the balance of momentum we have

, g . , .
8,(y5x§)+-££y5x§+w;AR§A+(y3x§®uA—T§A+§§A);A
+HF(§){,D&U’;®(U£ - S.j)ej_ t’;jej}]] =m§+r5g;§
where

&
'Yaxlg = J F(f)Psvg d¢
&

£
R = [ (B0t~ D0 oo de
&

£ )
T =x;s J’ 19D (¢) d¢
I3

ﬁ§2
ms=| F(&)m}§ d¢
Jf]
e,
FE%"=J F(&)psfs d¢
&
3
150=1 psvs®{F(&) (v —uf)+ vy’ sEPA (&) + éw sDPA(£)} de
CE3

We can write for the balance of internal energy
ko g k.
3rYs (&5 +3X5%7) +£7§(s£8 +3X5%7) + W;Aag

+ [')’5(:35 +%X’,§Xﬁ)d?+ TgAX£ + Q§+BQ];A
+IF(&)pale, +302) (vl —§7)e;— t¥vie;+ gle]

= 565+F6g§xi+ré st

(77)

(78a)

(78b)

(78¢)

(78d)

(78¢)

(78f)

(79)
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where

[ )
QBA=Xj,BJ‘ qiD®A(¢) d¢

3

&, )
T % =x,n J t9ve DPA(¢) dé

re,
a.sAZ ; {[DAB(f)_F(f)gAB][Pa(ES+%U§)];B
_DAB(‘E);BPB(ES +%U§)}§ d¢
a
Bs=1| psles+30){F(&)(v5—u3)
J&
+ U}sz,BEAB(f)"‘ fW;BDAB(f)} d¢
re,
F537'7'§)é£= ; F(§)paf’§vi d¢
re,
I 5= F(f)Ps’a d¢
X3
ce,
€ = F(¢)esd¢
v £

The balance of entropy is given by

3,(yny) +5g§7ns +w aM2A+(ynai? + 0%+ N2,

+[F(&){pn - (v/ —s')e+De] = m,

B3

s = 2 F(€)pn dé

&

e,
M*=| [E**(&)(pn);s — D**(&),50m]é dé

J &
o3

4= | x.a®'DP(¢) dt

L&

(e

NA= | pn{F(&)(v* —u®)+ o) pgEP(€) + éw, s D7 (&)} dE

v &

e
mo=| F(§)md¢

v &

875

(80a)

(80b)

(80¢)

(80d)

(80e)

(80f)

(80g)

(81)

(82a)

(82b)

(82¢)

(82d)

(82e)
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4.2. Equations of Balance at Surfaces and Interfaces

We study now the limiting behavior of the quantities (69). To that end,
we consider a thin region between two surfaces 2'(¢) and 2*(¢) of constant
thickness ¢ and fix & =—¢/2 and §,=¢/2. We assume:

(i) The surface field ¢ (u?, t) is given by the definition

gH(u?, 1) =lm y(x' 1), x'e V*(1), x> x'e3A1) (83)

and ¢~ (u”, t) by an analogous definition.

(ii) The limits of integrals over fields exist and are nonvanishing smooth
functions of the coordinates u and time t. Let G(u®, &, t) be a scalar-valued
function; then

e/2
st o=tim | Gt g0 (84)
£ —&e/2

is the scalar-valued field on the surface or interface. Similarly, we introduce
vector-valued functions on surfaces and interfaces by

g/2
Fiuh, 1) =1imj F(u?, & 1) d¢ (85)
>0 Jog/2
The limiting values of equations (32), (50), and (51) are
FO)=1 (86a)
D**(0)=g** (86b)
E“*B(0)=0 (86¢)
and
/2
lin(l) f Eh(u*, ¢ 1) dé=0 (87)
e —&/2
where p> 0. Therefore ¢* =0 and (69d) takes the form
g/2
¢A=lingj F(&)(u?, & (v —u?) dé (88)
Lind ~g/2

By definition, the velocity field #* is introduced into the theory indepen-
dently of certain motions of the particles on the surface =°, and therefore
o4 represents a diffusion of particles on the surface if we identify y(u?, & t)
with the density of mass. If the diffusion flux & on the surface is zero, we
obtain the expression for the velocity field

/2

gfu'A=lsi§3J F(ew(u®, & v d¢ (89)

—e/2
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where
e/2

Cat) =1Eiggf F(&)w(u", & 1) dt (90)

—e/

Equation (68) in the limit £ > 0 has the following form:

atw+§%¢+(¢wf‘+d>");,a+w- (v =whe+dlgl=m+o  (91)

where
/2
4(u?, 1):= x, 5¢" lim J F(£)®"(u”, £ 1) d¢ (92)
Lnd —&/2
g/2
a(u?, )= lir% J F(&)P(u?, & 1) de (93)
e —e/2
/2
a(u? t)= 1in5 J F(&)S(u?, & t) d¢ (94)
> —&/2

Equation (91) is the same as a result derived earlier (Grauel, 1982a). In
that work it was assumed that surface fields exist that are smooth on the
surface. Equation (90) shows that the field ¢ that we obtain by a limiting
process depends on the distribution of the Zlensity Yy(u?, & 1). Therefore,
the surface quantities in (91), have with (90), (93), and (94), a defined
meaning by the densities y(u?, & 1), ®/(u?, £ 1), P(u?, & t),and S(u?, & 1).

4.2.1. Balance of Mass

Thus we have for the density of mass

e/2
¥s = lim J F(&)ps dé (95)
€20 J—g/2
and for the production of mass
/2
> /2

Moreover, lim,.,I's=0 and the convective flux (73c) is given by Jj =
vs+ (ws —u”), where

1 ] €/2
wi=—lim J F(&)psv5 dé (97)
Y5 >0 J /2
We have thus
85+ ys + (yowi)ialpa - (v, —wi)e]= 5 (98)

2g
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as the equatjon of balance for the density of mass in the interface. By a
limiting process (Grauel, 1982b) similar to that for the density of mass, we
obtain the following equations:

4.2.2. Balance of Momentum

3,(ysw5) +i ysws +(vswE@ws — T5%). 4

+[ptE®@ (vl —w))e—t¥e]= mb+ v,F§ (99)
where
e/2
Yswh = lim J F(&)psvs dé (100a)
€ —~e/2
/2 ]
T =g"xn lirg J F(&)t¥ d¢ (100b)
£~ —&/2
£/2
mh =1lim f F(&)mk dg (100¢)
>0 ~e/2
e/2
vsF’§=lirré J F(&)psfs df (100d)
£ ~e/2
e/2
YWs@wh = lim J F(&)psvs®@us dE (100¢)
£ -e/2

4.2.3. Balance of Internal Energy

2 g
8,¥s (Es +%Wa) +£'}’a (sEs +%W§) + (ys( Es +%W¢23)W?”‘ TkAW‘lsc'*' Q?);A

o g ‘
+[palE +302) (vl —wi)e,— ¥ vie + gle]

=sea+')’5FI.§W£+')’6sr5 (101)
where
/2 ,
Va(sEa+%W§)=lirgJ F(§)ps(e5+3u5) dé (101a)
£ —&/2
/2 )
=T wit+ Q3 =1im X, J F(&)g" {170 +q5} e (101b)
£—> —e/2
&2
€5 =1in(} J F(&)es dé (101c)
&> —e/2
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g/2

75F§W§+75sr6=1inéj‘ F(&){psfsvi+pors} dé (101d)
&= 2

—s/

By some mathematical manipulations using equations (101), we have
(Grauel, 1982a)

a’(yES) +i ‘yEs + (yEsWA+ QA);A - TkAWk;A +[p(8 ‘f‘%(vk — wk)2)

X (v) = w))+q’ — 9 (v' —wh)el=yr, (102)

4.2.4. Balance of Entropy

g o .
3.(yns) +5E7ns +(ynw?+ M) 4+ [pn (v’ —w')e+ Dle]=m, (103)

where
e/2
yn, =lim J F(&)pn de (104a)
g —&/2
g/2 )
"= lim x; 5 J DIDAB(¢) de (104b)
£~ —g/2

Equations (98), (99), (101), and (103) are the same as given by Grauel
(1980, 1982a), except that here we have defined the surface quantities
precisely.

5. CONSTITUTIVE EQUATIONS FOR SEMIPERMEABLE
SURFACES AND INTERFACES

The constitutive equations depend on the physical field variables,
namely the density of mass, velocity, temperature, and geometrical field
variables used to characterize the curvature properties. If we know the
constitutive equations, then these, together with the balance equations, give
the field equations for the surface fields.

Definition. Every set of surface fields that yields a solution of the field
equations under initial and boundary conditions is called an interfacial
thermodynamic process of the material under consideration.
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The equations of semipermeable surfaces are the equations of balance
of mass, momentum, and internal energy and are given by
n

£ (VWD) at[pe- (Wh—w))e]= T Limsz,
1

a,ys+
Vs 2g P

g
a,(75w§)+£75w§+(y5w’§®w§‘— T5"):a

+[Pavﬁ®(v{;—w1)— t’g]ej = mk+'y Fk
' i o (105)

3.(yE,) +§yEs +(yEw* + Q%) = T w4
+[p(e +3(v* ~w*)) (v —wi)+ g’ — t9gu(v' —w')]e;
A A
= Z Vs sls T+ Z 78F§U§
5=1 =1

In addition, the fields of the materials occupying ¥ (¢) and ¥ (¢) will be
governed by the field equations of mass, momentum, and internal energy,
atpa + (pav{i),j =Ta
3pa t (pu0a®@ V5~ td),; = me+ pufa (106)
3.(pe)+(pev’+4q7) ;= tkjvk,j-i-p- r

where the constitutive equations for t¥, m¥X, and ¢* depend on the fields
of the mass density p,, velocity v¥, and bulk temperature T in a manner
characteristic for the bulk materials on each side of the interface.

The constitutive equations from physically motivated assumptions gen-
erally have too complicated a field dependence. Therefore, it is significant
to ask how we can reduce this dependence of the variables for a material
under consideration. Principles that reduce constitutive equations are called
reduction principles and we must require that they be compatible with the
laws of physics and mathematics. We use two principles with respect to the
functional form of the constitutive equations and require that these are
unchanged by (i) Galilean transformation and (ii) transformation of the
surface coordinates.

Moreover, we use the representations for isotropic functions. The third
principle is a physical one, called the entropy principle. The equations of
balance (105) must be supplemented by constitutive equations for E;, 7,,
Q*, ®*, and T** which relate the surface quantities to the fields of mass
density y(u?, t), velocity w*(u®, t), and temperature T,(u*, t) in a material-
dependent manner. We assume that the value of the surface temperature
T, may differ from the limiting values of the bulk temperatures T+ and T~
at the interface.

We discuss two different materials, a single viscous fluid and a chemi-
cally reacting mixture of fluids in the interface. The constitutive quantities
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for a single viscous fluid may have the functional dependence

C=%(y,T, xk,ATs,ka gABWk;ij,B, xk,A’ ek,A) (107)

where the gradient g*®w*; 4x’ ; describes a gradient of the velocity field w*.

We do not consider the explicit dependence of the velocity w* and a gradient
of the density of mass, because this dependence would not yield more
information. Moreover, we exclude a variable T, in our theory of a viscous
interface. But if we want to consider the possibility of thermal wave propaga-
tion at finite speeds, we must include the time derivative of T, in the theory.
The second material under consideration is a heat conducting material with
the possibility of chemical reactions in mixtures in the interface. For that
we consider the functional dependence

C = (6(‘)’87 T;’ yS,A: Ts,Aa WIS(, xk,Aa ek,A) (108)

In both (107) and (108) the components x* 4 and e* 4 are added to describe
the curvature properties of the interface. In the following we develop the
theory for a viscous interface and cite some results for a mixture of nonvis-
cous fluids derived in a previous paper (Grauel, 1982a).

5.1. Kinematical Transformation Properties

5.1.1. Restrictions Imposed by Galilean Transformation

We use two spatial frames %’ and x*, which are related by the Galilean

transformation
% = Q"+ vt (109)

where v’ is a time-independent velocity that relates the origin of the two
spatial frames and Q" is a time-independent orthogonal tensor with Q V=
QY and det(Q’*)==1. In the following I require that det(Q’*)=+1. A
scalar S, the components of a vector V’, and the components of a tensor
T’* are called objective if holds

§=s,  V=0Q*Y  T*=QrQ“r™ (110)
with respect to (109).

We begin by investigating the transformation properties of some
geometrical quantities and the fields on surfaces. When the surface motion
x'(u?, t) is replaced in (109), it is clear that the quantities x’ , are objective
quantities,

a=0Q%' 4 (111)

and moreover
é&=Q%’ and &' a=Q%’ 4 (112)
Consequently g4z, bas, ku, and kg are objective scalars with respect to
{109). It is easy to conclude that the mass density 7, the surface temperature
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T,, and the surface gradient T, 4 are objective scalars with respect to (109).

The deformation measure that characterizes a viscous medium is the variable

g*Pw* sx’ p in (107). The transformation is given by

gABxi;Bwj;A = QinquABxp;Beq(W;A"” w bap)
+gDCgABxp;qu;c(WD;A —wbpya) (113)
where we have used w’,, = Q**w* 4 and for w* 4 the expression
wh o= (W A+ W bca)e? +(wE 4 — wh$)x%c (114)

The first part of the right-hand side in (113) is antisymmetrical with respect
to p and q. This gives us the motivation to decompose the second part of
the right-hand side into a symmetrical and an antisymmetrical part. If we
collect together the antisymmetrical parts, then we obtain

g2 5xP W = QPQI(A + d477) (115)

with the definitions
AP = g"PxP ped(w 4+ wbac)+ g g “Pxl? px 9 c(wp,a— WbDAj (116)
a =gABgDCx(p;qu);c(WD;A“WbDA) (117)

If we imagine that the left-hand side of (113) can be decomposed into a
symmetrical part d” and an antisymmetrical part AY, then we have

di = QrQidr (118)
AV = QPQIIAM (119)
Equation (116) represents a rigid rotation and therefore A" does not
represent a variable in this theory. The quantity (117) is the deformation

gradient on surfaces and remains in the list of variables in (107). The list
of variables of a viscous fluid depends on

Ys Ts’ T;,A, dija xj;A’ and ej;A (120)

Moreover, the transformation properties of the constitutive equations in
the surface are given by

E=E, #,=m, Q'=0Q% &*=0" (121)
and

T = QM1 (122)
with respect to (110). From the condition that the moment of momentum

must be conserved in a viscous fluid, which is true of particles without spin,
we conclude that

TA=0 and  e*e p(TIBA+ TEN) = (123)
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Moreover, with the properties of e45 one has TH**1=0 and directly from
(109) it follows that

TAB _ TAB (124)

5.1.2. Principle of Material Objectivity in Space

For any given scalar-valued constitutive quantities (121) and (124) we
shall write &, for the time being, and let () represent the list (120) of surface
variables. The principle of material objectivity in space requires that the
constitutive quantities are invariant in form with respect to the transforma-
tion (110). Therefore, it is valid that

F(O)=F ) (125)

for any function %. Equation (125) represents a functional equation which
has the explicit form

‘U;;(’y, T'ss Ts,Ba djka xj;A’ ej;A)
= "J/;(’)_” Ts‘y i,Ba ‘ijk’ fj;AEj;A)
= 5(3. T.. T.s, Q7Qd™, @737, Q%) (126)

The function % will be a scalar-valued function; therefore & consists of
all possible combinations of scalar products, scalar triple products, etc.,
which we obtain by a combination of the vector variables, tensor variable
d’*, and the scalars of the list Q. The vector-valued variables are xj; 4 and
e’. 4. Not all combinations of these variables are independent of each other.
We have the following independent products, which yield linear variables

xj;A®xj;B = 8aB
_xj;A® ej;B =b,p (127)
djkxj;A®xk;B =dsp
where
dap=W(a,z — Whap (128}

If we neglect multiple products of variables that yield nonlinear scalar-
valued terms, we obtain a representation of & that is linear in the fields v,
T, T, A, dap, 8an, and b,p such that

F=%(y, T, T, dap, 8ap, bag)
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5.1.3. Restrictions Imposed by Transformations of the Surface Coordinates

Obviously, the surface coordinates in the form
u®=u*(@®) (129)

are not unique, and there are infinitely many curvilinear coordinate systems
that can be used to locate points on a given surface 2. We assume that the
transformations (129) are invertible, so that

ﬁB =Z¢B(uA)

and we require det(su”/oi”)=0. We call a scalar s, a vector v* and a
tensor t*® on the surface objective under (129) if

§=s, oi=hpo®,  P*E=h2h2P (130)

where hi=0i*/ou”. By h;'“ =ou®/oia* we denote the inverse of h and
we have to require that det(h’) # 0 holds. Moreover, we have h,'“hp=585.
From this it follows that &' , = h;'%e’ ; and %' = h;'®x’ ; and that the metric
tensor and the curvature tensor are objective with respect to (130c).
Moreover, we see that the mean curvature k,, and the Gaussian curvature
are objective scalars. Let us require that the density v and the temperature
be objective scalars. Whereas the surface gradient of the temperature and
the velocity gradient are objective quantities, according to the transformation
rule for covariant vectors and tensors:

TS’A=hZIBTS’B and d_AB=h;1ChBIDdCD (131)

Now we investigate which restrictions follow if we require that the constitu-
tive functions be invariant in form under transformation of the surface
coordinates.” For the time being we consider ¢(s, va, tap) @ constitutive
function depending on a scalar s, a covariant vector v, and a covariant
tensor 45 and let ¢ and ¢ be the values of this function in the system of
coordinates u™ and @?; then we require

=0 (132a)
according to (130a). If
@(s, Va, tap) = @(5, Ba, Tan) (133)
then we have invariance in form and a functional equation
(s, va, tan) = @(s, ha'“vG, ha' “h3' M ton) (134a)

from which we can conclude scalar-valued invariants. Similarly, we have
for a vector-valued or tensor-valued constitutive function

YK =pkypa (132b)

EXt = pin5E"? (132¢)
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Therefore, we have
hEQ (s, va, tan) = @™ (5, 3 “vg, B2 k5 icy)  (134b)
or
hEhpx P (s, va, tas) = X (s, B3 %v6, ha'°h5 P ten)  (134c)
Applying the above results to (121) and (124), we can write '
E(v, T;, T 4, dag, 8as, as)
=E (%, T, ha Ty, ha' by don, B3 “h5'" gon, W3 Chs' " boy)
0% -+ bag) =0, (%, ..., b2 “h by )
hIéQC('Y, ooy bap)= QK(’)’, ces hZIGh;HbGH)
hEDC (y, ..., bap)=®%(v,..., hx'°h5" " bsy)
hERETP(y, ..., bap) =T (y,..., h3"°h5" ¥ bsy)

(135)

The transformation principles on the surface require that the constitutive
functions be isotropic functions with respect to the group of transformations
k%, from which we now deduce restrictions for the constitutive functions.
Equations (135) are equations of functional behavior; this means that a
scalar-valued function depends on scalar invariants. The scalar invariants

are
'Y, Tsa kM, kG’ tr(d)a tr(dz)a tr(bd) ( 6)
13
T, aT, 58"% T aT. gb*%, T, AT, pd*"

with respect to the Hamilton-Cayley theorem for symmetrical matrices. For
the construction of constitutive equations by polynomials we use the
representation theorems of Smith (1965) and obtain

E, = E,(v, T., ku, kg, tr(d), tr(d?), tr(bd),
T AT, sg AB, T a Ts,BbAB, T, AT, pd AB)
N =71u(, -+, ToaTpd*?)
QK:KKAT55A+/\dKA];,A, KKA:: KgAB+'2AB (137)
(I)K — SKAT;’A""gdKA’I;,A, sI(A = EgAB+ é\bAB
TXE = AgXt+ BbXE + CdXE + DT, 4T, pg® X gPA + ET, 4T, sg® Kd V4
+ FT, oT, pg® “b"*+ Gd{ bV
where x, K, £, €, A, {, A, ..., G depend on the list of variables (136).
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5.2. Newtonian Fluid

We now discuss a Newtonian fluid in the interface. To that end we
restrict the list of variables to a linear dependence of the thermodynamic
variables; in particular the stress in the surface depends linearly on the
velocity gradient d,g = w4,5)— Wwhap and terms of the form g*°T, 4T,  are
neglected. The scalar-valued quantities are given by

E, = E (v, T, ku, kg, tr(d), tr(bd))
ns = 1,(% . .., tr(bd))
The vector-valued quantities have the representation
Q"= (~k*"+kd ") T,
04 = ("2 +ed"*®)T,p
and the stress tensor has the form
T*E = gg®t+ Ab ™+ nd ®5 + (g% tr(d) + vb " tr(d)
+ £g%L tr(bd) + xb™? tr(bd) + pd K pA
where

k8= KgAB + kb"B and e = sgAB +ebAB
1 2 1 2

K, K, € and € are functions of vy, T, ky, kg, tr(d), and tr(bd); and «, ¢, o,

A, Ly, & x, and p are dependent on vy, T, kyy, and kg.

5.3. Restrictions of the Constitutive Equations by a Surface Entropy
Principle

The constitutive equations can be further restricted by a physically
motivated principle, namely an entropy principle given by Miiller (1973).
Moeckel (1974) has given a modification for material interfaces and the
extension to arbitrary interfaces is straightforward. Let us now apply the
entropy principle in the modified form given by Grauel (1980). We assume:

(i) Ontheinterface there exists an additive quantity called the interface
entropy 7, which is balanced by

ax(vm)+‘2~gvm +(ynw + @) Al pn (v’ — wi) + D’ 1e;— yo, =m, (138)

where 7, is the production of entropy.
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(ii) For each thermodynamic process® on the interface the production
of entropy 7, cannot be negative; therefore we have

T, =0 (139)

or
g o .
3,(yms) +2—&;7ns +(ypow + D) 4 +(pn(v) — w) +®')e; — yo, =0 (140)

The interface entropy 7, is a scalar-valued quantity and the entropy
flux ®* is a vector-valued quantity on the interface. Both 7, and ®* must
be given by constitutive equations. Furthermore, the quantities enclosed in
the angular brackets must be given by constitutive equations. The specific
supply of entropy on the interface is given by the supplies of momentum
and internal energy

o, = a F*y+bryy (141)

where the scalar-valued coefficient b depends on scalars and scalar-valued
invariants; the vector-valued coefficient a, depends on vector-valued quan-
tities. The entropy inequality (140) takes the form

g
at(yns) +_2;'y77s + (’YWSWA+(I)A);A

+[pn(v! —wl)+®'le;— (arF* + br,)y=0 (142)

Mathematically, each solution of the field equations with respect to initial
and boundary data is a thermodynamic process. But we consider only
solutions that do not violate the additional restrictive requirement (139) in
the form of the entropy inequality (142). Therefore we obtain the required
interfacial field y(u®, 1), w*(u*, t), and T,(u®, f) from the inequality (142)
if we take into consideration the field equations as constraints. Lin (1972)
has explored these facts in a lemma based on an algebraic equivalence
between the system of field equations with (142) as constraint and a new
inequality obtained from (142) one introduces into it the field equations
multiplied with Lagrange multipliers. Liu has shown that the new inequality
is valid without any restriction to the space dimension and that it holds for

2The constitutive equations together with the equations of balance (balance of mass density,

balance of momentum, and balance of internal energy) represent the field equations for the
fields, namely the field of the density v, the velocity w¥, and the temperature 7. A thermody-
namic interfacial process is mathematically defined as follows: Each solution of the field
equations with respect to initial and boundary data is called a thermodynamic process.
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analytical fields. I use this algebraic equivalence and obtain the new
inequality in the form

6:(7m)+5i;7m+(vnsWA+<DA);A+[pn(vj— w')+®’le;— arF“y — bryy
- Ay(‘%’)""%?’ + (‘)’WA);A"' [po (v}~ Wj)ej])
—Aw(a,(yw)+§'yw+ (yww™) 4+ yw gw” + ywA @ wPb g
— T2 4= T*Pbap+[p,05®@(v]—w')e— 1 e]e, - YF>
- AWB(%(VWB) +5§; WP+ (WA @w?) 4 — ywwAb L~ ywg Pw 4
—ywdEw b+ TAb5 — TP s+ [p,05®@ (v — w')e,— t¥e 18" Px a — FB)
‘AES(ar(YEs) +§ YE +(yEw + Q™) s — Ty

+{p(e+3(v* —w)) v/ = w')e+qle,— 9 (v —wi ) e — yrs) =0 (143)

This entropy inequality must be valid for all thermodynamic fields y(u®, t),
w*(u?, 1), and T,(u?, t). At this moment we are not interested in calculating
these fields. However, we are interested in finding further restrictions for
the constitutive equations (137). The entropy inequality (143) contains five
Lagrange factors, namely the scalar-valued factors A”, A”, and A% and the
vector-valued factor A””. These factors can depend on

Y Ts, Toa, dap, 8ap, and b,p

according to the principle of equipresence of Truesdell and Toupin (1960).
In particular these factors can depend on the same set of variables as the
constitutive equations for scalar-valued or vector-valued quantities.

If we introduce the constitutive equations (137) into the entropy
inequality (143) and perform all differentiations step by step, then we obtain
an inequality that is linear in the derivatives

a,W, atWBa 5:% ath; ar’Ts,A, ardABa W;BA, ’Y,A
T, (8a), dpc,a, and bBC;A (144)

The inequality (143) holds for the analytic fields vy, w, w* and T, and it
must hold for arbitrary values of derivatives of these fields. The inequality
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could be violated by an arbitrary choice of values of these fields unless the
coeflicients of the quantities (144) are identically zero. From this we conclude
that the following conditions must be satisfied:

{8, w}: A"=0 (145)
fow?: AY=0 (146)
oy A= £ OYE: (147)
k% 3y
M 5 9E;
T} ——A"—=0 148
{9.T,} oT, 3T, (148)
07 g 0FE;
8, T, a}: ———ABE—==0 149
{6, T a} oT..» oT.. (149)
AN g OE;
8, dag)l: ———ABE—=0 150
{30.dag} Sdan o (150)
975 g 9E;
seh S —AE—2=90 151
{w.pc} Sbas b (151)
ol aQ*
{yah: ———AES,——Q =0 (152)
’ ay ay
a4 aQ“
T. : —AEs =0 153
{Tam) Tom) 3T.n (153)
ap4 aQ*
dgeak: ———AE =0 154
{dpc.a} pdoc odae (154)
P4 5 QY
bpc.ak: — A% =0 155
{bgc,a} 2bmc T (155)

We remark that there remains a residual entropy inequality, which will be
considered later. The residual entropy inequality is linear in the supply of
internal energy by radiation and in the supply of momentum. The inequality
could be violated by arbitrary values of r, and F* unless

b=A% (156)
and
a, =0 (157)

Consequently it follows that the supply of entropy in (138) is proportional
to the supply of radiation and is given by

o, =A%, (158)
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We now perform the interfacial analysis of exploiting the interfacial relations
(145)-(155). If we take into account the constitutive equations for a
Newtonian fluid (Section 5.2), then we get restrictions of the constitutive
equations. Moreover, we obtain an exact interfacial analysis by combination
of certain interfacial relations and some conclusions. Because of the sym-
metry of T, ,p with respect to A and B, the entropy inequality contains
only the symmetrical part of

L‘I’__AESEQ_A

159
0T, p 9T, p (159

We conclude from the representation of ®* and Q” that (159) has no
antisymmetrical part, and with respect to the algebraic independence of the
surface tensors g*® b*% and d“*® among one another we have

K= AES;‘:‘, K= AES§, k=A%¢ (160)

2 3 3

Furthermore,
®r=A5. Q4 (161)

From the relations (152)-(155) there follow restrictions for the auxiliary
function A%(y, Ty, Ty, das, 8ar, bas)- If we introduce (161) into (152),
we obtain
aAEj(y’ ) bAB)
ay

Q*=0
and if Q*# 0, we have
aAES(‘y’ ) bAB) —

a9y

Condition (162) means that the function A%(y,. .., bsz) does not depend
on the density field y. Moreover, we conclude from (153) and (154) that
the independence of T, and dg- consequently follows A®(T,, gap, bas).
Because A%(...) is scalar-valued, we write

AES(TS, kM, kG) (163)

0 (162)

From (155) we obtain the representation

10A5(T,, ..., ks) ANE(T,,.. ., k ))
(A — S s MG +2 53 s MG C)B
Q {(2 akay Fena okg g

_aAEs(T;;c. v, kG) bc)B} -0
G

(164)
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where we use

ok 1 k
—M =g  and O%
abCD 2 abCD

:szgCD_bCD

Since the metric tensor g*? and the curvature tensor b*® are algebraically
independent of each other, we conclude that A®(...) is not dependent on
the Gaussian curvature kg and the mean curvature ky,:

AR(T,) (165)

Next we investigate the interfacial relations that relate the internal energy
E, with the entropy 7, together with the constitutive equations, in order to
obtain restrictions for the constitutive equations. To that end we rewrite
(151) in terms of derivatives dn,/3kss and d7n,/d8ks and similarly for E; and
obtain

ans g OF;
—E A= 166
okg dkg (166)
ang g OE;
— AR —=0 167
dkag kg (167)

Indeed, we obtain restrictions for the interfacial thermodynamic quantities.
By differentiating (148) with respect to ky, and differentiating (167) with
respect to T, and subtracting the equations from each other we get

A" OE, _
T, akn
and if 9A%/aT, #0, then 9E,/dky =0 and
E(y, T, kg, tr(d), tr(bd))

The interpretation is easy: The internal energy does not depend on the
mean curvature k,, but on the present state. The curvature properties of
the present state can be characterized by the mean curvature k,, and the
Gaussian curvature kg. Further exploitation of (148), (150), (151), (166),
and (167) gives

E,=E(y, T,) (168)
and
ns=7s(v, Ts) (169)
Consequently,
YNs ovE,
szﬁ_AES_L (170)

ay ay
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From the expression (170) we conclude
A"=A"(v,T,) (171)

With respect to the foregoing results we conclude that the residual inequality
(143) can be written in the form

E
{—yl(a—"f—AEsa—E—S>gAB+AEsT*‘B}dAB+£Q"TMzo (172)
ay dy oT, g
We identify the expression (172) with 2 and consider X as the production
of entropy in the nonequilibrium state. In the equilibrium E we obtain
further restrictions for the stress tensor 7% and some interrelations. Equili-
brium is characterized as a thermodynamic process in which all constituents
are at rest in one frame of reference, so that velocity components of the
velocities in the bulk media or interfacial velocities are constant, and all
diffusion fluxes and all relative velocities are zero. Moreover, the tem-
perature is uniform and time-independent for both the bulk materials and
the interfacial materials. This means that T,= 7, = T_= T. Consequently,
no heat flux exists in both the bulk media and the interfacial material, and
no exchange of heat between the bulk media and the interface occurs. The
production of entropy (172) depends on

Y T‘s& T;,A’ dABa kMa kG, tr(d), tr(bd) (173)

where the dependence on the mean curvature k), and Gaussian curvature
is only implicit. The deformation gradient on interfaces d4p is a symmetrical
2% 2 tensor, where three components are independent. Therefore, dsp and
tr(d) are not independent of each other. For the exploitation of (172) it is
convenient to perform a decomposition of the deformation gradient into
two parts, namely into the trace term and a traceless part d, 5. The traceless
part of d,p is given by

JAB =dap _%dggAB (174)

where d &g ap is the trace term. Now we exploit (172) for a Newtonian fluid.
We consider the production of entropy in the form

E -
>= —y{?—AEs(;—;)dg +AEs{crdg + A tr(bd) + n[dABdAB +%(dg)2]
Y
+(dEY+ (v+E)dE tr(bd) + y[tr(bd) ]

aA"
T Q*T, 4=0 (175)

where

= _3C 1.D EF
Sap = b(AdB)C —ib(EdF)Dg 8an
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The entropy production Z takes on its minimum, namely zero, at the
equilibrium. Necessary conditions for the minimum value of £ are

x| 9% —0 8 B
0T, 4lE ’ 1.ar ’ atr(bd)| g
where X, represents the three independent quantities of the deformation
gradient. From (176a) the trivial condition follows
Q% =0 (177)
l.e., the heat flux on the interface must be zero. The condition (176c)
represents a restriction on the scalar-valued coefficient A, namely

Ale=0 (178)

0 (176)

From (176b) it follows that

_ 2(‘9Es|E 3(Ts77s)]15>
ol = -y 2l _ATm)le
a9y dy
where we have used the result (Grauel, 1980) A®(T,)|z = T,". If we take
the condition (148) at equilibrium and take into account (179), we obtain
the Gibbs equation

(179)

1 [8E,|x (aESIE ols) }
dng=—|—dTI,+|——+—7}d 180
n IE Ts[ oT. dy 72 Y ( )
and an integrability condition for ’flsl g in the form
GO"E
dIn(1/T, oT,
nch/ = 3E,| (181)
s 72 s E+ UlE

At equilibrium the matrix of the second derivatives must be positive semi-
definite. Therefore we can write

D 3’z P
0X; 0.X; 0X; 8T, 4 0X; 6 tr(bd)
2 2
aTs,i ?Tw BTS,Aaatzr (bd) = positive semidefinite (182)
3’z
3 tr(bd) 4 tr(bd)
In particular we obtain from the condition (3°2/6X; 8X)|z =0
2¢+m)|e=0 (183)
and

] =0 (184)



894 Grauel

Furthermore, it follows from [9°Z/6X; d tr(bd)]|g =0 that
[2(v+&)+ple=0 (185)

The condition [8°2/3 tr(bd) 3 tr(bd)]|z = 0 is restrictive for the scalar-valued
coeflicient x; we obtain

X|EZO (186)

If we take into account the representation (137), then from
(6°%/0T, aTS,B)I £ =0 the condition follows that the tensor-valued heat
conduction coefficient must be greater than or equal to zero:

k*B|p=0 (187)
Consequently, from (182)
x|e(2C+n)|e=[2(v+ )+ ulle (188)

6. REVIEW OF A MIXTURE OF CHEMICALLY REACTING
FLUIDS

In a previous paper (Grauel, 1982a) we have considered an interface
¥(t) with a mixture of A fluids (§=1,..., A), which divide a mixture of »
fluids (a =1,..., ») from a mixture of u fluids (B=1,..., u). The fluids
are heat conducting and inviscid, and it is assumed that the interface is
permeable and therefore in heat and material exchange. For the interface
we have to calculate 4A +1 fields as function of the surface parameters u'
and u® and the time ¢, namely the partial densities ys(u', u?, t), partial
velocities w¥(u', u? t), and temperature T,(u', u* t). The density of the
mixture, the velocity of the mixture, the diffusion velocity, and the relative
velocity are defined by

A
wk=Y Ew’g .
s=17Y
(189)

k k k
U5=W5"W

Wh=wk—wt  8=1,...,A—1.

We assume that the material of one fluid with the density 7y, is
homogeneously distributed on the interface, whereas A —1 fluids can be
exchanged with bulk fluids. For the determination of the 4A +1 interfacial
fields, we have 4A+1 balance equations (105). This system of partial
differential equations does not represent a closed system of equations. The
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system can be closed by supplementing constitutive equations of the form
(108). The constitutive equations relate the quantities

z,, E,, n,, m§, ¢, @4, T (190)
to the surface fields. The constitutive quantities (190) depend on
Q={vs, T, Ys.4, Toa, w5, x* 4, € 4} (191)
Therefore, the general form of (190) is given by
C=%(Q) (192)

Independence of a special system of coordinates requires invariance in the
form of (192) with respect to Galilean transformation. Therefore, we require

Q)= %) (193)
or
C=2%(3) (194)
where
2={%s, T, Vo.4> To.a» Wo, W5, 8ag, ban} (195)

If we take into account restrictions imposed by transformation of the surface
coordinates, some simplification with respect to the normal velocity W; and
the tangential velocity W3 and the fact that the scalar-valued functions
depend only on scalar-valued quantities, vector-valued functions on vector-
valued quantities, and tensor-valued functions on tensor-valued quantities
that are combinations of the list (195), it then follows that

zZ, = zr(’)’z‘n Ts’ kMa kG) (1963)
85285(753 T;, kM’ kG) (196b)
s =15, T, knt, ki) (196¢)
A1
‘/:%3= Z MS{“/{ (196d)
=1
B BA S Ba A pa
M =r1n5 : TS,A+;§1 ’;’lsg : 7§,A+§§1 Tag ' Wfa (196¢)
A A1
g? =" T .+ ¥ KfA-ygA-i—}: K?A'Wf‘ (196f)
1 ’ =12 ’ =13
B_ _BA S Ba S ga
P =0 Ts,A+£Z f; -7;,A+§Zl 930; ’ fo (196g)
i =1 =

T8 = —g,g”8 + 1;b"8 (196h)



896 Grauel
where

BA BA BA BA BA BA
ms =1¥[5-g +1¥Ia‘b > fznag=)yag'g +1yag'b

(196i)
méft = My, - g4+ M;, - b4
3 5 [
’I‘BA - IQgBA+ 2QbBA’ ’;?A= 3Q{ . gBA+ 4Q£ . bBA
(196)
BA _ . o BA . pBA
=g Qb
¢BA=¢'gBA+¢'bBA, ‘P?A=¢§'gBA+¢£'bBA
1 ! 2 2 3 4 (196k)

et =¢, g™+ ¢, b
3 5 6

The scalar-valued coefficients
MS’ M5{7 MB{: LRI MS{, Qs Qs QL’: cee Q{’ ¢a d’a (»b(, sy ¢{9 ¢§’ T5, Ts
1 2 3 6 1 2 3 6 1 2 3 5 6

are functions of the scalar-valued variables vy, T,, kas, and ks. From the
condition that the moment of momentum is a conserved quantity, we obtain
A A

./%5 =0 or M5§=O (197)

=1 =1

A A
mt=0, ¥ mi=0, T mg=0 (198)
1 §=1 2 5=1 3

I >

A
Y ME=0 or
8=1

3=1

Moreover, we obtain further restrictions by the entropy principle in the
form (140), where

A
‘yUﬂs: Z aiF§78+brsy (199)
5=1 . ,

We obtain a similar entropy inequality to (143) with additional quantities
a and b and Lagrangian multipliers A%, A*, A™5, and A% which depend
on ys, T., ¥s.a, Toa, Ws, W3, gap, and b, 5. The entropy inequality depends
linearly on the derivatives

B B
3:Ws, IW" 8, 3,5, 0,15, Wa(am), Vs.(8A)> Lu(BA)» Woas Wsas Pepia

and it holds for all analytical fields ys, ws, ws, and T,. From this entropy
inequality we obtain further restrictions for the constitutive equations
(1962)-(196h) with the technique as described in Section 5.3. For more
details see Grauel (1982a).
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Let us consider the residual inequality X as a measure of the production
of entropy in a nonequilibrium state. If we require that % is linear with
respect to 5,4, then we conclude from X that « £4=0in (196f) and

maf = 8°M80s/0y,~ vs dps/ 0¥} (200)

in (196e), where we have introduced the chemical potential u, without

velocity-dependent terms by additional considerations. We find for the
constituent B in the mixture

(e, — Tyms)

(201)
9Ys

o 2 Y
/""B=£s"7;77s+—+ Z 7(553_"‘§>
s Y s=1 Y
or

_9v(e;—Tim,)
L Vs
o is the surface tension, T is the surface temperature, and &, — T,n, = F is
the free energy. The residual inequality contains heat flux terms, particle
diffusion terms, and the affinity of the chemical reactions in the interface,
which couple together in specific transport processes. These couplings
together with the positivity of the entropy production yield restrictions on
the transport equations, which we will not discuss at the moment. The
entropy production 2 takes its minimum in the equilibrium state E. Hence
A
X
o

=1

(202)

s malslvs =0 (203)

E

where r=1,..., n. Equation (203) means that the chemical affinity is zero
in a mixture in the state E. Furthermore, we find

2knoy =~ pal ‘ (204)

From this it follows that the product of mean curvature k,, times surface
tension oy is related to a pressure jump on the interface. Moreover, :chB =0

follows in (196f). Let us put together some results of our theory. The Gibbs
relation on the interface is given by

1 {oe Atde, 1 1
d s=—{—sde+ [——s+— g—Tmn)—— ]}d 205
n T, 4T, 5§1 75 y( ) ylslfa Ys ( )

The internal energy and entropy depend on the interface density of the
constituent § and the interfacial temperature

e(vs, Ty) (2062)
(¥, T5) (206b)
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We find for the heat flux and entropy flux the representation

A—1

q*=—«"T 5+ ¥ «{"W} (207)
¢=1

A 1 A 1 2 A

* =19 —;gl vsUs o (208)

Furthermore, the interaction normal to the surface contains in lowest order
only one term, namely a friction term

A—1

=1

and the interaction tangential to the interface depends on a temperature
gradient, a friction term, and we have a dependence over a density gradient
of the interfacial tension and the interfacial chemical potential

A1 A
Jﬂg‘:’ln?BTs,B‘*(Z TBnaAgBWZB+gAB Y {005/0vs — s 0#8/0')’5}‘)’;,3 (210)
=1 =1 s

Moreover, the partial stress tensor has the representation

T{%=-0y(vs, T.) - 8*° (211)
and the stress tensor in the mixture is given by
P = (s, T,) - g (212)
where
2 & (e, — Timy)
o= 3 a=y Ty - 13)

5=1 5=1 3%Ys

7. CONCLUSION

In the present paper, we have investigated a nonequilibrium thermody-
namic field theory and have studied thermodynamic processes as well as
the nonequilibrium behavior of thin regions and interfaces. Furthermore, -
we have given a rigorous approach to constitutive equations, for a viscous,
heat conducting fluid and for a mixture of chemically reacting fluids that
are heat conducting. We have not postulated the Gibbs equation on inter-
faces, but we have seen that this equation can be deduced from an interfacial
entropy principle and integrability conditions on interfaces. The interaction
force (3 tangential to the interface depends on the scalar-valued coefficient
of the surface stress and the chemical potential. Moreover, the scalar-valued
coeflicient of the interfacial tension of the constituent § depends only on
the density y, and the interfacial temperature T, if the constitutive equations
do not depend on density gradients y; 4.
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The method is not restricted to chemically reacting fluids and viscous
fluids and the concept of this field-theoretic approach can be applied to
fluid films, interfacial fluid membranes, boundary layers, layered structures
(liquid crystals), etc., with the possibility of momentum, heat, and material
exchange with the surrounding media. Equation (69) shows that we can
take into account density distributions and chemically active materials. By
a limiting process £ >0 we obtain a closed set of boundary conditions for
a moving boundary. This boundary can be semipermeable and chemical
reactions can occur in the interfacial fluids. Moreover, the theory in the
case £ > 0 can be applied to phase boundary problems and stability consider-
ations of fluid interfaces.
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